← Back to Leaderboard

The AI CUDA Engineer 👷

51_Gemm_Subtract_GlobalAvgPool_LogSumExp_GELU_ResidualAddconstant_memory_optimization_base

Level 2 • Task 51
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    subtract: torch.Tensor,
) -> torch.Tensor:
    """
    Performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix for linear layer of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector for linear layer of shape (out_features)
        subtract (torch.Tensor): Vector to subtract of shape (out_features)

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    original_x = x.clone().detach()

    # Gemm
    x = F.linear(x, weight, bias)

    # Subtract
    x = x - subtract

    # GlobalAvgPool
    x = torch.mean(x, dim=1, keepdim=True)

    # LogSumExp
    x = torch.logsumexp(x, dim=1, keepdim=True)

    # GELU
    x = F.gelu(x)

    # ResidualAdd
    x = x + original_x

    return x


class Model(nn.Module):
    """
    Model that performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(gemm.bias)
        self.subtract = nn.Parameter(torch.randn(out_features) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias, self.subtract)


batch_size = 128
in_features = 1024
out_features = 512


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.
    """
    def __init__(self, in_features, out_features, bias=True):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features, bias=bias)
        self.subtract = nn.Parameter(torch.randn(out_features) * 0.02)

    def forward(self, x):
        original_x = x.clone().detach()
        # Gemm
        x = self.gemm(x)

        # Subtract
        x = x - self.subtract

        # GlobalAvgPool
        x = torch.mean(x, dim=1, keepdim=True)

        # LogSumExp
        x = torch.logsumexp(x, dim=1, keepdim=True)

        # GELU
        x = torch.nn.functional.gelu(x)

        # ResidualAdd
        x = x + original_x

        return x

batch_size = 128
in_features = 1024
out_features = 512

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 51 • 51_Gemm_Subtract_GlobalAvgPool_LogSumExp_GELU_ResidualAdd)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 fused_forward_base 0.05 1.62 0.92
🥇 fused_forward_edit_1 0.05 1.62 0.92
🥉 fused_forward_coalesced_base 0.05 1.58 0.90
4 fused_forward_coalesced_edit_1 0.05 1.55 0.89
5 optimized_fused_kernel_base 0.06 1.32 0.76
6 fused_pipeline_base 0.06 1.28 0.73
6 threadblock_mapping_opt_base 0.06 1.28 0.73
8 atomic_optimized_pipeline_base 0.06 1.26 0.72
8 efficient_thread_block_mapping_base 0.06 1.26 0.72
8 aligned_memory_access_base_base 0.06 1.26 0.72
8 fused_pool_gelu_atomic_minimal_base 0.06 1.26 0.72
8 fused_pool_gelu_warp_edit_base 0.06 1.26 0.72
8 aligned_memory_access_base_base 0.06 1.26 0.72
14 constant_memory_optimization_base 0.07 1.24 0.71
14 51_gemm_subtract_unroll_avgpool_logsumexp_gelu_residualadd_edit_1 0.07 1.24 0.71
14 uniform_control_flow_base_base_base 0.07 1.24 0.71
17 modular_device_functions_optimized_base 0.07 1.22 0.70
17 modular_device_functions_base_base 0.07 1.22 0.70
19 experiment_block_sizes_base 0.07 1.19 0.68
19 tiled_gemm_shared_edit_2_base 0.07 1.19 0.68
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>

#define MAX_OUT_FEATURES 4096
#define TILE_DIM 16
#define BLOCK_ROWS 16

// Constant memory for bias and subtract vectors
__constant__ float c_bias[MAX_OUT_FEATURES];
__constant__ float c_subtract[MAX_OUT_FEATURES];

//---------------------------------------------------------------------------
// Optimized GEMM kernel with coalesced memory access using tiling
// Computes: out[r, c] = dot(x[r, :], weight[c, :]) + c_bias[c] - c_subtract[c]
// x: [batch_size x in_features]
// weight: [out_features x in_features]
// out: [batch_size x out_features]
//---------------------------------------------------------------------------
__global__ void coalesced_gemm_subtract_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    float* __restrict__ out,
    int batch_size,
    int in_features,
    int out_features
) {
    __shared__ float tile_x[TILE_DIM][TILE_DIM+1];
    __shared__ float tile_w[TILE_DIM][TILE_DIM+1];

    int bx = blockIdx.x;
    int by = blockIdx.y;
    int tx = threadIdx.x;
    int ty = threadIdx.y;

    int row = by * TILE_DIM + ty;
    int col = bx * TILE_DIM + tx;

    float sum = 0.0f;

    // Loop over tiles
    for (int t = 0; t < (in_features + TILE_DIM - 1) / TILE_DIM; t++) {
        // Load tile from x
        if (row < batch_size && (t * TILE_DIM + tx) < in_features)
            tile_x[ty][tx] = x[row * in_features + t * TILE_DIM + tx];
        else
            tile_x[ty][tx] = 0.0f;
        
        // Load tile from weight
        if (col < out_features && (t * TILE_DIM + ty) < in_features)
            tile_w[ty][tx] = weight[col * in_features + t * TILE_DIM + ty];
        else
            tile_w[ty][tx] = 0.0f;

        __syncthreads();

        #pragma unroll
        for (int k = 0; k < TILE_DIM; k++) {
            sum += tile_x[ty][k] * tile_w[k][tx];
        }

        __syncthreads();
    }

    if (row < batch_size && col < out_features) {
        out[row * out_features + col] = sum + c_bias[col] - c_subtract[col];
    }
}

//---------------------------------------------------------------------------
// Fused kernel: for each batch row, perform average pooling (reduction) over the GEMM output,
// apply the GELU activation on the computed average, and then add the result to each element
// of the corresponding original input row (residual addition).
// gemm_out: [batch_size x out_features]
// original_x: [batch_size x in_features]
// out: [batch_size x in_features]
//---------------------------------------------------------------------------
__global__ void fused_pool_gelu_residual_kernel(
    const float* __restrict__ gemm_out,
    const float* __restrict__ original_x,
    float* __restrict__ out,
    int batch_size,
    int out_features,
    int in_features
) {
    // One block per batch row
    int row = blockIdx.x;
    
    // Shared memory for reduction
    extern __shared__ float sdata[];
    float local_sum = 0.0f;
    
    // Each thread reduces part of the GEMM output row
    for (int i = threadIdx.x; i < out_features; i += blockDim.x) {
        local_sum += gemm_out[row * out_features + i];
    }
    sdata[threadIdx.x] = local_sum;
    __syncthreads();

    // Reduction in shared memory
    for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
        if (threadIdx.x < s)
            sdata[threadIdx.x] += sdata[threadIdx.x + s];
        __syncthreads();
    }

    // Thread 0 computes the average and applies GELU activation
    float avg = sdata[0] / static_cast<float>(out_features);
    float gelu = avg * 0.5f * (1.0f + tanhf(0.7978845608f * (avg + 0.044715f * avg * avg * avg)));
    __syncthreads();

    // Residual addition: add the activated scalar to each element of original_x row
    for (int j = threadIdx.x; j < in_features; j += blockDim.x) {
        int idx = row * in_features + j;
        out[idx] = original_x[idx] + gelu;
    }
}

//---------------------------------------------------------------------------
// Forward function that launches the fused pipeline.
// Sequence of operations:
// 1. GEMM with bias and subtract using coalesced memory accesses
// 2. Fused kernel that performs average pooling over GEMM output, applies GELU activation,
//    and performs residual addition with the original input.
//---------------------------------------------------------------------------

torch::Tensor forward_cuda(
    const torch::Tensor& x,
    const torch::Tensor& weight,
    const torch::Tensor& bias,
    const torch::Tensor& subtract
) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor");
    TORCH_CHECK(subtract.is_cuda(), "subtract must be a CUDA tensor");
    TORCH_CHECK(x.dim() == 2, "x must be 2D (batch_size x in_features)");
    TORCH_CHECK(weight.dim() == 2, "weight must be 2D (out_features x in_features)");
    TORCH_CHECK(bias.dim() == 1, "bias must be 1D (out_features)");
    TORCH_CHECK(subtract.dim() == 1, "subtract must be 1D (out_features)");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "Mismatch between weight and x dimensions");
    TORCH_CHECK(bias.size(0) == out_features, "bias dimension must match weight output features");
    TORCH_CHECK(subtract.size(0) == out_features, "subtract dimension must match weight output features");
    TORCH_CHECK(out_features <= MAX_OUT_FEATURES, "out_features exceeds maximum allowed for constant memory");

    auto x_contig = x.contiguous();
    auto weight_contig = weight.contiguous();
    auto bias_contig = bias.contiguous();
    auto subtract_contig = subtract.contiguous();

    // Copy bias and subtract vectors to constant memory
    cudaMemcpyToSymbol(c_bias, bias_contig.data_ptr<float>(), out_features * sizeof(float));
    cudaMemcpyToSymbol(c_subtract, subtract_contig.data_ptr<float>(), out_features * sizeof(float));

    // Clone original input for residual addition
    auto original_x = x_contig.clone();

    // Allocate intermediate tensor for GEMM output and final output tensor
    auto gemm_out = torch::empty({batch_size, out_features}, x.options());
    auto out_tensor = torch::empty({batch_size, in_features}, x.options());

    // Launch the optimized GEMM kernel
    dim3 threadsGemm(TILE_DIM, BLOCK_ROWS);
    dim3 blocksGemm((out_features + TILE_DIM - 1) / TILE_DIM, (batch_size + TILE_DIM - 1) / TILE_DIM);
    coalesced_gemm_subtract_kernel<<<blocksGemm, threadsGemm>>>(
        x_contig.data_ptr<float>(),
        weight_contig.data_ptr<float>(),
        gemm_out.data_ptr<float>(),
        batch_size,
        in_features,
        out_features
    );

    // Launch the fused pooling, GELU, and residual addition kernel
    // One block per batch row; using 256 threads per block and dynamic shared memory for reduction
    int threadsFused = 256;
    fused_pool_gelu_residual_kernel<<<batch_size, threadsFused, threadsFused * sizeof(float)>>>(
        gemm_out.data_ptr<float>(),
        original_x.data_ptr<float>(),
        out_tensor.data_ptr<float>(),
        batch_size,
        out_features,
        in_features
    );

    return out_tensor;
}

// PyBind11 interface
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward_cuda, "Fused GEMM, pooling, GELU, and residual add CUDA kernel");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.256 inst/cycle 0.000 5
Executed Ipc Elapsed 0.142 inst/cycle 0.000 5
Issue Slots Busy 6.518 % 0.003 5
Issued Ipc Active 0.260 inst/cycle 0.000 5
SM Busy 6.518 % 0.003 5
Memory Throughput 123456506340.906 byte/second 11988427721628178432.000 5
Mem Busy 6.794 % 0.040 5
Max Bandwidth 5.142 % 0.020 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 66.222 % 0.026 5
Mem Pipes Busy 3.372 % 0.008 5
Warp Cycles Per Issued Instruction 30.104 cycle 0.075 5
Warp Cycles Per Executed Instruction 30.584 cycle 0.078 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 24.770 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 10.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.336 % 0.001 5
Achieved Active Warps Per SM 7.894 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 242943.43 μs
Device Time 184.89 μs
Self CPU Time 55.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 242887.64 μs
Device Time 184.89 μs
Self CPU Time 114.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 263196.94 μs
Device Time 0.00 μs
Self CPU Time 21039.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaMemcpyToSymbol
CPU Time 245583.07 μs
Device Time 27836.86 μs
Self CPU Time 245583.07 μs
Self Device Time 27836.86 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Memcpy DtoD (Device -> Device)
CPU Time 0.00 μs
Device Time 68050.18 μs
Self CPU Time 0.00 μs
Self Device Time 68050.18 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 576901.95 μs
Device Time 27843.47 μs
Self CPU Time 576901.95 μs
Self Device Time 27843.47 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
coalesced_gemm_subtract_kernel(float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 378646.03 μs
Self CPU Time 0.00 μs
Self Device Time 378646.03 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 69115.11 μs
Device Time 615436.23 μs
Self CPU Time 12746.68 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 56370.22 μs
Device Time 615436.23 μs
Self CPU Time 18038.01 μs
Self Device Time 615436.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 615515.17 μs
Self CPU Time 0.00 μs
Self Device Time 615515.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:22:5 bugprone-easily-swappable-parameters
22 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:22:31: note: the first parameter in the range is 'x'
22 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:23:31: note: the last parameter in the range is 'weight'
23 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:32:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | int bx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:33:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | int by = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:34:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:35:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
35 | int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:80:5: warning: 2 adjacent parameters of 'fused_pool_gelu_residual_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
80 | const float* __restrict__ gemm_out,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
81 | const float* __restrict__ original_x,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:80:31: note: the first parameter in the range is 'gemm_out'
80 | const float* __restrict__ gemm_out,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:81:31: note: the last parameter in the range is 'original_x'
81 | const float* __restrict__ original_x,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:83:5: warning: 3 adjacent parameters of 'fused_pool_gelu_residual_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
83 | int batch_size,
| ^~~~~~~~~~~~~~~
84 | int out_features,
| ~~~~~~~~~~~~~~~~~
85 | int in_features
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:83:9: note: the first parameter in the range is 'batch_size'
83 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:85:9: note: the last parameter in the range is 'in_features'
85 | int in_features
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:88:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
88 | int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:95:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | for (int i = threadIdx.x; i < out_features; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:95:54: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | for (int i = threadIdx.x; i < out_features; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:114:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
114 | for (int j = threadIdx.x; j < in_features; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:114:53: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
114 | for (int j = threadIdx.x; j < in_features; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:143:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
143 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:144:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
144 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b10_s2_constant_memory_optimization/base/base.cu:145:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
145 | int out_features = weight.size(0);
| ^