← Back to Leaderboard

The AI CUDA Engineer 👷

51_Gemm_Subtract_GlobalAvgPool_LogSumExp_GELU_ResidualAddmodular_device_functions_optimized_base

Level 2 • Task 51
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    subtract: torch.Tensor,
) -> torch.Tensor:
    """
    Performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix for linear layer of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector for linear layer of shape (out_features)
        subtract (torch.Tensor): Vector to subtract of shape (out_features)

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    original_x = x.clone().detach()

    # Gemm
    x = F.linear(x, weight, bias)

    # Subtract
    x = x - subtract

    # GlobalAvgPool
    x = torch.mean(x, dim=1, keepdim=True)

    # LogSumExp
    x = torch.logsumexp(x, dim=1, keepdim=True)

    # GELU
    x = F.gelu(x)

    # ResidualAdd
    x = x + original_x

    return x


class Model(nn.Module):
    """
    Model that performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(gemm.bias)
        self.subtract = nn.Parameter(torch.randn(out_features) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias, self.subtract)


batch_size = 128
in_features = 1024
out_features = 512


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a series of operations: Gemm, Subtract, GlobalAvgPool, LogSumExp, GELU, and ResidualAdd.
    """
    def __init__(self, in_features, out_features, bias=True):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features, bias=bias)
        self.subtract = nn.Parameter(torch.randn(out_features) * 0.02)

    def forward(self, x):
        original_x = x.clone().detach()
        # Gemm
        x = self.gemm(x)

        # Subtract
        x = x - self.subtract

        # GlobalAvgPool
        x = torch.mean(x, dim=1, keepdim=True)

        # LogSumExp
        x = torch.logsumexp(x, dim=1, keepdim=True)

        # GELU
        x = torch.nn.functional.gelu(x)

        # ResidualAdd
        x = x + original_x

        return x

batch_size = 128
in_features = 1024
out_features = 512

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 51 • 51_Gemm_Subtract_GlobalAvgPool_LogSumExp_GELU_ResidualAdd)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 fused_forward_base 0.05 1.62 0.92
🥇 fused_forward_edit_1 0.05 1.62 0.92
🥉 fused_forward_coalesced_base 0.05 1.58 0.90
4 fused_forward_coalesced_edit_1 0.05 1.55 0.89
5 optimized_fused_kernel_base 0.06 1.32 0.76
6 fused_pipeline_base 0.06 1.28 0.73
6 threadblock_mapping_opt_base 0.06 1.28 0.73
8 atomic_optimized_pipeline_base 0.06 1.26 0.72
8 efficient_thread_block_mapping_base 0.06 1.26 0.72
8 aligned_memory_access_base_base 0.06 1.26 0.72
8 fused_pool_gelu_atomic_minimal_base 0.06 1.26 0.72
8 fused_pool_gelu_warp_edit_base 0.06 1.26 0.72
8 aligned_memory_access_base_base 0.06 1.26 0.72
14 constant_memory_optimization_base 0.07 1.24 0.71
14 51_gemm_subtract_unroll_avgpool_logsumexp_gelu_residualadd_edit_1 0.07 1.24 0.71
14 uniform_control_flow_base_base_base 0.07 1.24 0.71
17 modular_device_functions_optimized_base 0.07 1.22 0.70
17 modular_device_functions_base_base 0.07 1.22 0.70
19 experiment_block_sizes_base 0.07 1.19 0.68
19 tiled_gemm_shared_edit_2_base 0.07 1.19 0.68
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>

#define MAX_OUT_FEATURES 4096
#define WARP_SIZE 32
#define BLOCK_SIZE 256
#define TILE_SIZE 16

__constant__ float c_bias[MAX_OUT_FEATURES];
__constant__ float c_subtract[MAX_OUT_FEATURES];

//------------------------------------------------------------------------------
// Modular device functions for core operations
namespace device {

// Efficient dot product computation
__device__ __forceinline__ float dot_product(
    const float* __restrict__ a,
    const float* __restrict__ b,
    const int size
) {
    float sum = 0.0f;
    #pragma unroll
    for (int i = 0; i < size; ++i) {
        sum += a[i] * b[i];
    }
    return sum;
}

// Warp-level reduction
__device__ __forceinline__ float warp_reduce_sum(float val) {
    #pragma unroll
    for (int offset = WARP_SIZE/2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

// GELU activation
__device__ __forceinline__ float gelu(float x) {
    const float kAlpha = 0.044715f;
    const float kBeta = 0.7978845608f;
    float inner = kBeta * (x + kAlpha * x * x * x);
    return x * 0.5f * (1.0f + tanhf(inner));
}

// Efficient block-level reduction
__device__ __forceinline__ float block_reduce_sum(
    float val,
    float* shared_mem
) {
    const int tid = threadIdx.x;
    const int lane_id = tid % WARP_SIZE;
    const int warp_id = tid / WARP_SIZE;
    const int warps_per_block = BLOCK_SIZE / WARP_SIZE;

    // Warp-level reduction
    val = warp_reduce_sum(val);

    // Write reduced warp results to shared memory
    if (lane_id == 0) {
        shared_mem[warp_id] = val;
    }
    __syncthreads();

    // Final reduction across warps
    if (tid < warps_per_block) {
        val = (tid < (BLOCK_SIZE / WARP_SIZE)) ? shared_mem[tid] : 0.0f;
        val = warp_reduce_sum(val);
    }
    
    return val;
}

} // namespace device

//------------------------------------------------------------------------------
// Optimized GEMM kernel with tiling and fused operations
__global__ void fused_gemm_subtract_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    float* __restrict__ out,
    const int batch_size,
    const int in_features,
    const int out_features
) {
    __shared__ float x_shared[TILE_SIZE][TILE_SIZE + 1];  // +1 for bank conflicts
    __shared__ float w_shared[TILE_SIZE][TILE_SIZE + 1];

    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int row = blockIdx.x * TILE_SIZE + tx;
    const int col = blockIdx.y * TILE_SIZE + ty;

    float acc = 0.0f;

    for (int t = 0; t < (in_features + TILE_SIZE - 1) / TILE_SIZE; ++t) {
        // Collaborative loading of tiles into shared memory
        if (row < batch_size && t * TILE_SIZE + ty < in_features) {
            x_shared[tx][ty] = x[row * in_features + t * TILE_SIZE + ty];
        } else {
            x_shared[tx][ty] = 0.0f;
        }
        
        if (col < out_features && t * TILE_SIZE + tx < in_features) {
            w_shared[ty][tx] = weight[col * in_features + t * TILE_SIZE + tx];
        } else {
            w_shared[ty][tx] = 0.0f;
        }
        
        __syncthreads();

        // Compute partial dot products
        acc += device::dot_product(x_shared[tx], w_shared[ty], TILE_SIZE);
        
        __syncthreads();
    }

    // Write result with fused bias and subtract
    if (row < batch_size && col < out_features) {
        out[row * out_features + col] = acc + c_bias[col] - c_subtract[col];
    }
}

//------------------------------------------------------------------------------
// Optimized average pooling kernel with fused logsumexp
__global__ void fused_avgpool_logsumexp_kernel(
    const float* __restrict__ x,
    float* __restrict__ out,
    const int batch_size,
    const int out_features
) {
    extern __shared__ float shared_mem[];
    
    const int tid = threadIdx.x;
    const int bid = blockIdx.x;
    
    float sum = 0.0f;
    for (int j = tid; j < out_features; j += blockDim.x) {
        sum += x[bid * out_features + j];
    }
    
    sum = device::block_reduce_sum(sum, shared_mem);
    
    if (tid == 0) {
        float avg = sum / static_cast<float>(out_features);
        out[bid] = logf(expf(avg));
    }
}

//------------------------------------------------------------------------------
// Optimized GELU and residual add kernel
__global__ void fused_gelu_residual_kernel(
    const float* __restrict__ scalar,
    const float* __restrict__ original_x,
    float* __restrict__ out,
    const int batch_size,
    const int in_features
) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int total = batch_size * in_features;
    
    if (idx < total) {
        const int i = idx / in_features;
        out[idx] = original_x[idx] + device::gelu(scalar[i]);
    }
}

torch::Tensor forward_cuda(
    const torch::Tensor& x,
    const torch::Tensor& weight,
    const torch::Tensor& bias,
    const torch::Tensor& subtract
) {
    TORCH_CHECK(x.is_cuda() && weight.is_cuda() && bias.is_cuda() && subtract.is_cuda(),
                "All tensors must be CUDA tensors");

    const int64_t batch_size = x.size(0);
    const int64_t in_features = x.size(1);
    const int64_t out_features = weight.size(0);

    auto x_ = x.contiguous();
    auto w_ = weight.contiguous();
    auto b_ = bias.contiguous();
    auto s_ = subtract.contiguous();

    cudaMemcpyToSymbol(c_bias, b_.data_ptr<float>(), out_features * sizeof(float));
    cudaMemcpyToSymbol(c_subtract, s_.data_ptr<float>(), out_features * sizeof(float));

    auto original_x = x_.clone();
    auto gemm_out = torch::empty({batch_size, out_features}, x.options());
    auto pool_out = torch::empty({batch_size}, x.options());

    // Launch optimized GEMM kernel
    dim3 blockGemm(TILE_SIZE, TILE_SIZE);
    dim3 gridGemm(
        (batch_size + TILE_SIZE - 1) / TILE_SIZE,
        (out_features + TILE_SIZE - 1) / TILE_SIZE
    );
    fused_gemm_subtract_kernel<<<gridGemm, blockGemm>>>(
        x_.data_ptr<float>(),
        w_.data_ptr<float>(),
        gemm_out.data_ptr<float>(),
        batch_size,
        in_features,
        out_features
    );

    // Launch fused avgpool and logsumexp kernel
    const int threads = BLOCK_SIZE;
    const int shared_mem_size = (threads / WARP_SIZE) * sizeof(float);
    fused_avgpool_logsumexp_kernel<<<batch_size, threads, shared_mem_size>>>(
        gemm_out.data_ptr<float>(),
        pool_out.data_ptr<float>(),
        batch_size,
        out_features
    );

    // Launch fused GELU and residual add kernel
    auto out = torch::empty({batch_size, in_features}, x.options());
    const int total = batch_size * in_features;
    const int blocks = (total + threads - 1) / threads;
    fused_gelu_residual_kernel<<<blocks, threads>>>(
        pool_out.data_ptr<float>(),
        original_x.data_ptr<float>(),
        out.data_ptr<float>(),
        batch_size,
        in_features
    );

    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward_cuda, 
          "Modular CUDA implementation with optimized device functions");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.086 inst/cycle 0.001 5
Executed Ipc Elapsed 0.386 inst/cycle 0.000 5
Issue Slots Busy 28.106 % 0.339 5
Issued Ipc Active 1.124 inst/cycle 0.001 5
SM Busy 28.106 % 0.339 5
Memory Throughput 149851895044.044 byte/second 10597999412610832384.000 5
Mem Busy 11.696 % 0.037 5
Max Bandwidth 9.006 % 0.032 5
L1/TEX Hit Rate 9.720 % 0.000 5
L2 Hit Rate 75.322 % 0.113 5
Mem Pipes Busy 8.592 % 0.036 5
Warp Cycles Per Issued Instruction 23.994 cycle 0.013 5
Warp Cycles Per Executed Instruction 24.874 cycle 0.012 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 25.040 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 42.064 % 0.322 5
Achieved Active Warps Per SM 26.924 warp 0.131 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (41.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 547328.75 μs
Device Time 226.21 μs
Self CPU Time 87.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 547240.76 μs
Device Time 226.21 μs
Self CPU Time 157.04 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 563895.23 μs
Device Time 0.00 μs
Self CPU Time 17576.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 541601.80 μs
Device Time 0.00 μs
Self CPU Time 541601.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Memcpy DtoD (Device -> Device)
CPU Time 0.00 μs
Device Time 55270.11 μs
Self CPU Time 0.00 μs
Self Device Time 55270.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 492395.71 μs
Device Time 43518.14 μs
Self CPU Time 492395.71 μs
Self Device Time 43518.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
fused_gemm_subtract_kernel(float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 338319.30 μs
Self CPU Time 0.00 μs
Self Device Time 338319.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 57110.89 μs
Device Time 550772.90 μs
Self CPU Time 11344.75 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 45767.51 μs
Device Time 550772.90 μs
Self CPU Time 14900.35 μs
Self Device Time 550772.90 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 550772.90 μs
Self CPU Time 0.00 μs
Self Device Time 550772.90 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:54:21 bugprone-narrowing-conversions
54 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:82:5: warning: 2 adjacent parameters of 'fused_gemm_subtract_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
82 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
83 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:82:31: note: the first parameter in the range is 'x'
82 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:83:31: note: the last parameter in the range is 'weight'
83 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:92:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
92 | const int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:93:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
93 | const int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:94:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | const int row = blockIdx.x * TILE_SIZE + tx;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:95:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | const int col = blockIdx.y * TILE_SIZE + ty;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:132:5: warning: 2 adjacent parameters of 'fused_avgpool_logsumexp_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
132 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
133 | const int out_features
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:132:15: note: the first parameter in the range is 'batch_size'
132 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:133:15: note: the last parameter in the range is 'out_features'
133 | const int out_features
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:137:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
137 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:138:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
138 | const int bid = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:141:46: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | for (int j = tid; j < out_features; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:162:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
162 | const int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:206:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
206 | batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:207:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
207 | in_features,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:208:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
208 | out_features
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:217:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
217 | batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:218:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
218 | out_features
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:223:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
223 | const int total = batch_size * in_features;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:229:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
229 | batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_51/b7_s1_modular_device_functions_optimized/base/base.cu:230:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
230 | in_features
| ^