← Back to Leaderboard

The AI CUDA Engineer 👷

59_Matmul_Swish_Scaling59_matmul_swish_scaling_coalesced_base

Level 2 • Task 59
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    scaling_factor: float,
) -> torch.Tensor:
    """
    Applies linear transformation, Swish activation, and scaling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)
        scaling_factor (float): Factor to scale the output by

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * torch.sigmoid(x)  # Swish activation
    x = x * scaling_factor
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
    """

    def __init__(self, in_features, out_features, scaling_factor):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(gemm.bias)
        self.scaling_factor = scaling_factor

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias, self.scaling_factor)


batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, scaling_factor]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
    """
    def __init__(self, in_features, out_features, scaling_factor):
        super(Model, self).__init__()
        self.matmul = nn.Linear(in_features, out_features)
        self.scaling_factor = scaling_factor

    def forward(self, x):
        x = self.matmul(x)
        x = x * torch.sigmoid(x)  # Swish activation
        x = x * self.scaling_factor
        return x

batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, scaling_factor]

Kernel Information

Related Kernels (Level 2, Task 59 • 59_Matmul_Swish_Scaling)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void swish_scaling_kernel_coalesced(const float* __restrict__ input, float* output, float scaling_factor, int N) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < N) {
        float x = input[idx];
        // Swish activation: x * sigmoid(x)
        float sigmoid = 1.0f / (1.0f + expf(-x));
        float y = x * sigmoid * scaling_factor;
        output[idx] = y;
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias,
    double scaling_factor) {

    // Ensure tensors are contiguous
    x = x.contiguous();
    weight = weight.contiguous();
    bias = bias.contiguous();

    // Ensure tensors are on CUDA
    TORCH_CHECK(x.is_cuda(), "Input tensor 'x' must be a CUDA tensor.");
    TORCH_CHECK(weight.is_cuda(), "Weight tensor must be a CUDA tensor.");
    TORCH_CHECK(bias.is_cuda(), "Bias tensor must be a CUDA tensor.");

    // Ensure data types are float32
    TORCH_CHECK(x.scalar_type() == at::kFloat, "Input tensor 'x' must be of type torch.float32.");
    TORCH_CHECK(weight.scalar_type() == at::kFloat, "Weight tensor must be of type torch.float32.");
    TORCH_CHECK(bias.scalar_type() == at::kFloat, "Bias tensor must be of type torch.float32.");

    // Compute linear transformation: y = x @ weight.T + bias
    auto y = at::addmm(bias, x, weight.t());

    // Get the number of elements
    int N = y.numel();

    // Allocate output tensor
    auto output = at::empty_like(y);

    // Launch the CUDA kernel
    const int threads = 1024;
    const int blocks = (N + threads - 1) / threads;

    swish_scaling_kernel_coalesced<<<blocks, threads>>>(
        y.data_ptr<float>(),
        output.data_ptr<float>(),
        static_cast<float>(scaling_factor),
        N);

    // Check for kernel launch errors
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA kernel failed : ", cudaGetErrorString(err));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Custom CUDA forward function");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.404 inst/cycle 0.000 5
Executed Ipc Elapsed 0.068 inst/cycle 0.000 5
Issue Slots Busy 10.928 % 0.090 5
Issued Ipc Active 0.436 inst/cycle 0.000 5
SM Busy 10.928 % 0.090 5
Memory Throughput 79122281315.454 byte/second 14237045256295469056.000 5
Mem Busy 10.998 % 0.294 5
Max Bandwidth 7.128 % 0.122 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 82.394 % 0.062 5
Mem Pipes Busy 3.986 % 0.037 5
Warp Cycles Per Issued Instruction 64.942 cycle 0.091 5
Warp Cycles Per Executed Instruction 70.398 cycle 0.107 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.610 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 8.000 block 0.000 5
Block Limit Warps 2.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 45.238 % 0.532 5
Achieved Active Warps Per SM 28.954 warp 0.219 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (46.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 547824.17 μs
Device Time 186.62 μs
Self CPU Time 56.63 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 547767.53 μs
Device Time 186.62 μs
Self CPU Time 117.59 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 569699.27 μs
Device Time 0.00 μs
Self CPU Time 22679.33 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 546460.80 μs
Device Time 0.00 μs
Self CPU Time 546460.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::addmm
CPU Time 605353.06 μs
Device Time 151372.80 μs
Self CPU Time 215533.25 μs
Self Device Time 151372.80 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas
CPU Time 0.00 μs
Device Time 136130.33 μs
Self CPU Time 0.00 μs
Self Device Time 136130.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 76074.45 μs
Device Time 703131.49 μs
Self CPU Time 13505.32 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 62570.35 μs
Device Time 703131.49 μs
Self CPU Time 21496.37 μs
Self Device Time 703131.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 703131.49 μs
Self CPU Time 0.00 μs
Self Device Time 703131.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45280 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:5:96 bugprone-easily-swappable-parameters
5 | __global__ void swish_scaling_kernel_coalesced(const float* __restrict__ input, float* output, float scaling_factor, int N) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:5:102: note: the first parameter in the range is 'scaling_factor'
5 | __global__ void swish_scaling_kernel_coalesced(const float* __restrict__ input, float* output, float scaling_factor, int N) {
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:5:122: note: the last parameter in the range is 'N'
5 | __global__ void swish_scaling_kernel_coalesced(const float* __restrict__ input, float* output, float scaling_factor, int N) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:5:118: note: 'float' and 'int' may be implicitly converted
5 | __global__ void swish_scaling_kernel_coalesced(const float* __restrict__ input, float* output, float scaling_factor, int N) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:6:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
6 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b1_s3_59_matmul_swish_scaling_coalesced/base/base.cu:41:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | int N = y.numel();
| ^