59_Matmul_Swish_Scaling
• matmul_swish_scaling_grid_stride_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
scaling_factor: float,
) -> torch.Tensor:
"""
Applies linear transformation, Swish activation, and scaling.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_features)
weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
bias (torch.Tensor): Bias vector of shape (out_features)
scaling_factor (float): Factor to scale the output by
Returns:
torch.Tensor: Output tensor of shape (batch_size, out_features)
"""
x = F.linear(x, weight, bias)
x = x * torch.sigmoid(x) # Swish activation
x = x * scaling_factor
return x
class Model(nn.Module):
"""
Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
"""
def __init__(self, in_features, out_features, scaling_factor):
super(Model, self).__init__()
gemm = nn.Linear(in_features, out_features)
self.weight = nn.Parameter(gemm.weight)
self.bias = nn.Parameter(gemm.bias)
self.scaling_factor = scaling_factor
def forward(self, x, fn=module_fn):
return fn(x, self.weight, self.bias, self.scaling_factor)
batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0
def get_inputs():
return [torch.randn(batch_size, in_features)]
def get_init_inputs():
return [in_features, out_features, scaling_factor]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
"""
def __init__(self, in_features, out_features, scaling_factor):
super(Model, self).__init__()
self.matmul = nn.Linear(in_features, out_features)
self.scaling_factor = scaling_factor
def forward(self, x):
x = self.matmul(x)
x = x * torch.sigmoid(x) # Swish activation
x = x * self.scaling_factor
return x
batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0
def get_inputs():
return [torch.randn(batch_size, in_features)]
def get_init_inputs():
return [in_features, out_features, scaling_factor]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
// Kernel using grid-stride loops in 2D for efficient thread mapping
__global__ void swish_scaling_kernel_grid_stride(const float* __restrict__ input,
float* output,
float scaling_factor,
int rows,
int cols) {
// Calculate initial row and column for this thread
int init_row = blockIdx.y * blockDim.y + threadIdx.y;
int init_col = blockIdx.x * blockDim.x + threadIdx.x;
// Use grid-stride loops to cover the full matrix
for (int row = init_row; row < rows; row += gridDim.y * blockDim.y) {
for (int col = init_col; col < cols; col += gridDim.x * blockDim.x) {
int idx = row * cols + col;
float x = input[idx];
float sigmoid = 1.0f / (1.0f + expf(-x));
output[idx] = x * sigmoid * scaling_factor;
}
}
}
// The forward function performing matrix multiplication and invoking the CUDA kernel
torch::Tensor forward(
torch::Tensor x,
torch::Tensor weight,
torch::Tensor bias,
double scaling_factor) {
// Ensure tensors are contiguous and on CUDA
x = x.contiguous();
weight = weight.contiguous();
bias = bias.contiguous();
TORCH_CHECK(x.is_cuda(), "Input tensor 'x' must be a CUDA tensor.");
TORCH_CHECK(weight.is_cuda(), "Weight tensor must be a CUDA tensor.");
TORCH_CHECK(bias.is_cuda(), "Bias tensor must be a CUDA tensor.");
TORCH_CHECK(x.scalar_type() == at::kFloat, "Input tensor 'x' must be of type torch.float32.");
TORCH_CHECK(weight.scalar_type() == at::kFloat, "Weight tensor must be of type torch.float32.");
TORCH_CHECK(bias.scalar_type() == at::kFloat, "Bias tensor must be of type torch.float32.");
// Compute the linear transformation: y = bias + x @ weight.T
auto y = at::addmm(bias, x, weight.t());
auto output = at::empty_like(y);
// Determine matrix dimensions
int rows = (y.dim() == 1) ? 1 : y.size(0);
int cols = (y.dim() == 1) ? y.size(0) : y.size(1);
// Choose block dimensions (16x16 is a balanced choice)
dim3 threads(16, 16);
dim3 blocks((cols + threads.x - 1) / threads.x,
(rows + threads.y - 1) / threads.y);
// Launch the kernel with grid-stride loops for robust mapping
swish_scaling_kernel_grid_stride<<<blocks, threads>>>(
y.data_ptr<float>(),
output.data_ptr<float>(),
static_cast<float>(scaling_factor),
rows,
cols);
// Check for any kernel launch errors
cudaError_t err = cudaGetLastError();
TORCH_CHECK(err == cudaSuccess, "CUDA kernel failed: ", cudaGetErrorString(err));
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Matrix Multiplication with Swish Activation and Scaling using Grid-Stride Loops");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.328 | inst/cycle | 0.001 | 5 |
Executed Ipc Elapsed | 0.126 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 9.776 | % | 0.628 | 5 |
Issued Ipc Active | 0.392 | inst/cycle | 0.001 | 5 |
SM Busy | 9.776 | % | 0.628 | 5 |
Memory Throughput | 75785883997.206 | byte/second | 2088623740751151104.000 | 5 |
Mem Busy | 11.746 | % | 0.048 | 5 |
Max Bandwidth | 7.180 | % | 0.018 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 82.886 | % | 0.010 | 5 |
Mem Pipes Busy | 4.308 | % | 0.006 | 5 |
Warp Cycles Per Issued Instruction | 34.630 | cycle | 0.511 | 5 |
Warp Cycles Per Executed Instruction | 41.534 | cycle | 0.732 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 29.160 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 10.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 21.846 | % | 0.147 | 5 |
Achieved Active Warps Per SM | 13.984 | warp | 0.061 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (21.3%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 350827.36 | μs |
Device Time | 193.69 | μs |
Self CPU Time | 63.54 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 350763.82 | μs |
Device Time | 193.69 | μs |
Self CPU Time | 113.97 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 372258.95 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 22243.74 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 349090.33 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 349090.33 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::addmm | ||
CPU Time | 565208.23 | μs |
Device Time | 149593.50 | μs |
Self CPU Time | 220401.35 | μs |
Self Device Time | 149593.50 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas | ||
CPU Time | 0.00 | μs |
Device Time | 134852.49 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 134852.49 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 79392.83 | μs |
Device Time | 699539.17 | μs |
Self CPU Time | 14138.11 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 65258.76 | μs |
Device Time | 699539.17 | μs |
Self CPU Time | 22754.70 | μs |
Self Device Time | 699539.17 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 699539.17 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 699539.17 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45285 warnings generated when compiling for host. Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.