← Back to Leaderboard

The AI CUDA Engineer 👷

59_Matmul_Swish_Scalingmatmul_swish_scaling_grid_stride_base

Level 2 • Task 59
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    scaling_factor: float,
) -> torch.Tensor:
    """
    Applies linear transformation, Swish activation, and scaling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)
        scaling_factor (float): Factor to scale the output by

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * torch.sigmoid(x)  # Swish activation
    x = x * scaling_factor
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
    """

    def __init__(self, in_features, out_features, scaling_factor):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(gemm.bias)
        self.scaling_factor = scaling_factor

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias, self.scaling_factor)


batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, scaling_factor]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Swish activation, and scales the result.
    """
    def __init__(self, in_features, out_features, scaling_factor):
        super(Model, self).__init__()
        self.matmul = nn.Linear(in_features, out_features)
        self.scaling_factor = scaling_factor

    def forward(self, x):
        x = self.matmul(x)
        x = x * torch.sigmoid(x)  # Swish activation
        x = x * self.scaling_factor
        return x

batch_size = 128
in_features = 1024
out_features = 512
scaling_factor = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, scaling_factor]

Kernel Information

Related Kernels (Level 2, Task 59 • 59_Matmul_Swish_Scaling)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Kernel using grid-stride loops in 2D for efficient thread mapping
__global__ void swish_scaling_kernel_grid_stride(const float* __restrict__ input,
                                                   float* output,
                                                   float scaling_factor,
                                                   int rows,
                                                   int cols) {
    // Calculate initial row and column for this thread
    int init_row = blockIdx.y * blockDim.y + threadIdx.y;
    int init_col = blockIdx.x * blockDim.x + threadIdx.x;

    // Use grid-stride loops to cover the full matrix
    for (int row = init_row; row < rows; row += gridDim.y * blockDim.y) {
        for (int col = init_col; col < cols; col += gridDim.x * blockDim.x) {
            int idx = row * cols + col;
            float x = input[idx];
            float sigmoid = 1.0f / (1.0f + expf(-x));
            output[idx] = x * sigmoid * scaling_factor;
        }
    }
}

// The forward function performing matrix multiplication and invoking the CUDA kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias,
    double scaling_factor) {

    // Ensure tensors are contiguous and on CUDA
    x = x.contiguous();
    weight = weight.contiguous();
    bias = bias.contiguous();

    TORCH_CHECK(x.is_cuda(), "Input tensor 'x' must be a CUDA tensor.");
    TORCH_CHECK(weight.is_cuda(), "Weight tensor must be a CUDA tensor.");
    TORCH_CHECK(bias.is_cuda(), "Bias tensor must be a CUDA tensor.");
    TORCH_CHECK(x.scalar_type() == at::kFloat, "Input tensor 'x' must be of type torch.float32.");
    TORCH_CHECK(weight.scalar_type() == at::kFloat, "Weight tensor must be of type torch.float32.");
    TORCH_CHECK(bias.scalar_type() == at::kFloat, "Bias tensor must be of type torch.float32.");

    // Compute the linear transformation: y = bias + x @ weight.T
    auto y = at::addmm(bias, x, weight.t());
    auto output = at::empty_like(y);

    // Determine matrix dimensions
    int rows = (y.dim() == 1) ? 1 : y.size(0);
    int cols = (y.dim() == 1) ? y.size(0) : y.size(1);

    // Choose block dimensions (16x16 is a balanced choice)
    dim3 threads(16, 16);
    dim3 blocks((cols + threads.x - 1) / threads.x,
                (rows + threads.y - 1) / threads.y);

    // Launch the kernel with grid-stride loops for robust mapping
    swish_scaling_kernel_grid_stride<<<blocks, threads>>>(
        y.data_ptr<float>(),
        output.data_ptr<float>(),
        static_cast<float>(scaling_factor),
        rows,
        cols);

    // Check for any kernel launch errors
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA kernel failed: ", cudaGetErrorString(err));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Matrix Multiplication with Swish Activation and Scaling using Grid-Stride Loops");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.328 inst/cycle 0.001 5
Executed Ipc Elapsed 0.126 inst/cycle 0.000 5
Issue Slots Busy 9.776 % 0.628 5
Issued Ipc Active 0.392 inst/cycle 0.001 5
SM Busy 9.776 % 0.628 5
Memory Throughput 75785883997.206 byte/second 2088623740751151104.000 5
Mem Busy 11.746 % 0.048 5
Max Bandwidth 7.180 % 0.018 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 82.886 % 0.010 5
Mem Pipes Busy 4.308 % 0.006 5
Warp Cycles Per Issued Instruction 34.630 cycle 0.511 5
Warp Cycles Per Executed Instruction 41.534 cycle 0.732 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.160 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 10.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 21.846 % 0.147 5
Achieved Active Warps Per SM 13.984 warp 0.061 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (21.3%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 350827.36 μs
Device Time 193.69 μs
Self CPU Time 63.54 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 350763.82 μs
Device Time 193.69 μs
Self CPU Time 113.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 372258.95 μs
Device Time 0.00 μs
Self CPU Time 22243.74 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 349090.33 μs
Device Time 0.00 μs
Self CPU Time 349090.33 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::addmm
CPU Time 565208.23 μs
Device Time 149593.50 μs
Self CPU Time 220401.35 μs
Self Device Time 149593.50 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas
CPU Time 0.00 μs
Device Time 134852.49 μs
Self CPU Time 0.00 μs
Self Device Time 134852.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 79392.83 μs
Device Time 699539.17 μs
Self CPU Time 14138.11 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 65258.76 μs
Device Time 699539.17 μs
Self CPU Time 22754.70 μs
Self Device Time 699539.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 699539.17 μs
Self CPU Time 0.00 μs
Self Device Time 699539.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45285 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:8:52 bugprone-easily-swappable-parameters
8 | float scaling_factor,
| ^~~~~~~~~~~~~~~~~~~~~
9 | int rows,
| ~~~~~~~~~
10 | int cols) {
| ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:8:58: note: the first parameter in the range is 'scaling_factor'
8 | float scaling_factor,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:10:56: note: the last parameter in the range is 'cols'
10 | int cols) {
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:9:52: note: 'float' and 'int' may be implicitly converted
9 | int rows,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:12:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
12 | int init_row = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:13:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
13 | int init_col = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:16:49: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | for (int row = init_row; row < rows; row += gridDim.y * blockDim.y) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:17:53: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | for (int col = init_col; col < cols; col += gridDim.x * blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:50:39: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | int rows = (y.dim() == 1) ? 1 : y.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:51:35: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
51 | int cols = (y.dim() == 1) ? y.size(0) : y.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_2/task_59/b5_s1_matmul_swish_scaling_grid_stride/base/base.cu:51:47: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
51 | int cols = (y.dim() == 1) ? y.size(0) : y.size(1);
| ^