65_Conv2d_AvgPool_Sigmoid_Sum
• opt_conv_pool_sigmoid_sum_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
conv_weight: torch.Tensor,
conv_bias: torch.Tensor,
) -> torch.Tensor:
"""
Performs convolution, average pooling, applies sigmoid, and sums the result.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
conv_weight (torch.Tensor): Convolution weights of shape (out_channels, in_channels, kernel_size, kernel_size)
conv_bias (torch.Tensor): Convolution bias of shape (out_channels)
Returns:
torch.Tensor: Output tensor of shape (batch_size,) containing summed values
"""
x = F.conv2d(x, conv_weight, bias=conv_bias)
x = F.avg_pool2d(x, pool_kernel_size)
x = torch.sigmoid(x)
x = torch.sum(x, dim=[1, 2, 3])
return x
class Model(nn.Module):
"""
This model performs a convolution, average pooling, applies sigmoid, and sums the result.
"""
def __init__(self, in_channels, out_channels, kernel_size, pool_kernel_size):
super(Model, self).__init__()
conv = nn.Conv2d(in_channels, out_channels, kernel_size)
self.conv_weight = nn.Parameter(conv.weight)
self.conv_bias = nn.Parameter(conv.bias)
def forward(self, x, fn=module_fn):
return fn(x, self.conv_weight, self.conv_bias)
batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
pool_kernel_size = 2
def get_inputs():
return [torch.randn(batch_size, in_channels, height, width)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, pool_kernel_size]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
This model performs a convolution, average pooling, applies sigmoid, and sums the result.
"""
def __init__(self, in_channels, out_channels, kernel_size, pool_kernel_size):
super(Model, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
self.avg_pool = nn.AvgPool2d(pool_kernel_size)
def forward(self, x):
x = self.conv(x)
x = self.avg_pool(x)
x = torch.sigmoid(x)
x = torch.sum(x, dim=[1,2,3]) # Sum over all spatial dimensions
return x
batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
pool_kernel_size = 2
def get_inputs():
return [torch.randn(batch_size, in_channels, height, width)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, pool_kernel_size]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>
// Define constants
#define BLOCK_SIZE 256
#define POOL_SIZE 2
#define BLOCKS_PER_BATCH 4
// Optimized CUDA kernel: performs convolution, average pooling, and sigmoid activation,
// then reduces the results via shared memory and atomic addition. This version combines
// the best practices from previous kernels by using __restrict__ pointers for memory access,
// #pragma unroll for inner loops to minimize divergence, and workload splitting across blocks.
__global__ void optimized_conv_pool_sigmoid_sum_kernel(
const float* __restrict__ input,
const float* __restrict__ weight,
const float* __restrict__ bias,
float* output,
const int batch_size,
const int in_channels,
const int out_channels,
const int height,
const int width,
const int kernel_size
) {
// Determine the batch index and the block's offset for work splitting
int batch_idx = blockIdx.x / BLOCKS_PER_BATCH;
int block_offset = blockIdx.x % BLOCKS_PER_BATCH;
if (batch_idx >= batch_size) return;
// Compute output dimensions after convolution
int out_height = height - kernel_size + 1;
int out_width = width - kernel_size + 1;
// Compute pooling output dimensions
int pool_out_height = out_height / POOL_SIZE;
int pool_out_width = out_width / POOL_SIZE;
// Each work item corresponds to one pooling cell in an output channel
int total_work = out_channels * pool_out_height * pool_out_width;
// Workload division among blocks assigned to a batch
int chunk = (total_work + BLOCKS_PER_BATCH - 1) / BLOCKS_PER_BATCH;
int start = block_offset * chunk;
int end = start + chunk;
if (end > total_work) end = total_work;
float partial_sum = 0.0f;
// Each thread processes multiple elements in a grid-stride loop
for (int idx = start + threadIdx.x; idx < end; idx += blockDim.x) {
int cells_per_channel = pool_out_height * pool_out_width;
int oc = idx / cells_per_channel;
int cell = idx % cells_per_channel;
int pool_h = cell / pool_out_width;
int pool_w = cell % pool_out_width;
// Initialize convolution result with bias
float conv_result = bias[oc];
// Convolution over all input channels and kernel window
for (int ic = 0; ic < in_channels; ic++) {
#pragma unroll
for (int kh = 0; kh < kernel_size; kh++) {
#pragma unroll
for (int kw = 0; kw < kernel_size; kw++) {
int h_in = pool_h * POOL_SIZE + kh;
int w_in = pool_w * POOL_SIZE + kw;
int input_idx = ((batch_idx * in_channels + ic) * height + h_in) * width + w_in;
int weight_idx = (((oc * in_channels + ic) * kernel_size) + kh) * kernel_size + kw;
conv_result += input[input_idx] * weight[weight_idx];
}
}
}
// Average pooling (divide by the pooling window size)
conv_result /= (POOL_SIZE * POOL_SIZE);
// Sigmoid activation
conv_result = 1.0f / (1.0f + expf(-conv_result));
partial_sum += conv_result;
}
// Shared memory reduction within the block
extern __shared__ float sdata[];
sdata[threadIdx.x] = partial_sum;
__syncthreads();
for (unsigned int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
if (threadIdx.x < stride) {
sdata[threadIdx.x] += sdata[threadIdx.x + stride];
}
__syncthreads();
}
// Use atomicAdd to update the final result for the batch
if (threadIdx.x == 0) {
atomicAdd(&output[batch_idx], sdata[0]);
}
}
// Host function to launch the kernel
torch::Tensor forward(
torch::Tensor input,
torch::Tensor weight,
torch::Tensor bias
) {
const int batch_size = input.size(0);
const int in_channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int out_channels = weight.size(0);
const int kernel_size = weight.size(2);
auto output = torch::zeros({batch_size}, input.options());
int threads = BLOCK_SIZE;
int blocks = batch_size * BLOCKS_PER_BATCH;
int shared_mem_size = BLOCK_SIZE * sizeof(float);
optimized_conv_pool_sigmoid_sum_kernel<<<blocks, threads, shared_mem_size>>>(
input.data_ptr<float>(),
weight.data_ptr<float>(),
bias.data_ptr<float>(),
output.data_ptr<float>(),
batch_size,
in_channels,
out_channels,
height,
width,
kernel_size
);
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Optimized convolution + avgpool + sigmoid + sum kernel");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 2.304 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 1.926 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 57.692 | % | 0.059 | 5 |
Issued Ipc Active | 2.308 | inst/cycle | 0.000 | 5 |
SM Busy | 57.692 | % | 0.059 | 5 |
Memory Throughput | 97325109942.310 | byte/second | 782257882745383808.000 | 5 |
Mem Busy | 52.742 | % | 0.176 | 5 |
Max Bandwidth | 28.446 | % | 0.051 | 5 |
L1/TEX Hit Rate | 95.230 | % | 0.000 | 5 |
L2 Hit Rate | 55.118 | % | 2.319 | 5 |
Mem Pipes Busy | 28.446 | % | 0.051 | 5 |
Warp Cycles Per Issued Instruction | 12.410 | cycle | 0.001 | 5 |
Warp Cycles Per Executed Instruction | 12.426 | cycle | 0.001 | 5 |
Avg. Active Threads Per Warp | 31.100 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 27.830 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 6.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 16.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 48.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 75.000 | % | 0.000 | 5 |
Achieved Occupancy | 44.772 | % | 0.002 | 5 |
Achieved Active Warps Per SM | 28.654 | warp | 0.001 | 5 |
Rule | Description |
---|---|
INF HighPipeUtilization | ALU is the highest-utilized pipeline (31.8%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. The difference between calculated theoretical (75.0%) and measured achieved occupancy (44.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::zeros | ||
CPU Time | 5390974.53 | μs |
Device Time | 120928.85 | μs |
Self CPU Time | 148754.37 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 5681080.84 | μs |
Device Time | 7025104.91 | μs |
Self CPU Time | 293179.19 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 5387903.71 | μs |
Device Time | 7025104.91 | μs |
Self CPU Time | 372003.12 | μs |
Self Device Time | 7025103.67 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 5339736.78 | μs |
Device Time | 306064.69 | μs |
Self CPU Time | 5339736.78 | μs |
Self Device Time | 306064.69 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
optimized_conv_pool_sigmoid_sum_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 1131277.18 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 1131277.18 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 821777.39 | μs |
Device Time | 303612.53 | μs |
Self CPU Time | 821777.39 | μs |
Self Device Time | 303612.53 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 6904725.14 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 6904725.14 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45291 warnings generated when compiling for host. Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.