78_ConvTranspose3d_Max_Max_Sum
• modular_maxpool_kernel_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
stride: int,
padding: int,
conv_transpose: torch.Tensor,
conv_transpose_bias: torch.Tensor,
) -> torch.Tensor:
"""
Applies a 3D transposed convolution operation followed by two max pooling layers and a sum operation.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
stride (int): Stride of the transposed convolution
padding (int): Padding of the transposed convolution
conv_transpose (torch.Tensor): Transposed convolution weight tensor
conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
Returns:
torch.Tensor: Output tensor after applying transposed convolution, max pooling and sum reduction
"""
x = F.conv_transpose3d(
x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
)
x = F.max_pool3d(x, kernel_size=2)
x = F.max_pool3d(x, kernel_size=3)
x = torch.sum(x, dim=1, keepdim=True)
return x
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, followed by two max pooling layers and a sum operation.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(Model, self).__init__()
conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
self.conv_transpose_parameter = nn.Parameter(conv.weight)
self.conv_transpose_bias = nn.Parameter(conv.bias)
def forward(self, x, stride, padding, fn=module_fn):
return fn(
x, stride, padding, self.conv_transpose_parameter, self.conv_transpose_bias
)
batch_size = 16
in_channels = 8
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
def get_inputs():
return [torch.randn(batch_size, in_channels, depth, height, width), stride, padding]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, stride, padding]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, followed by two max pooling layers and a sum operation.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(Model, self).__init__()
self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
self.max_pool1 = nn.MaxPool3d(kernel_size=2)
self.max_pool2 = nn.MaxPool3d(kernel_size=3)
def forward(self, x):
x = self.conv_transpose(x)
x = self.max_pool1(x)
x = self.max_pool2(x)
x = torch.sum(x, dim=1, keepdim=True)
return x
batch_size = 16
in_channels = 8
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
def get_inputs():
return [torch.randn(batch_size, in_channels, depth, height, width)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, stride, padding]
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cfloat>
// Device function: 2x2x2 max pooling on the input tensor
__device__ inline float pool2x2x2(const float* input, int n, int c,
int start_d1, int start_h1, int start_w1,
int D1, int H1, int W1, int C) {
float max_val = -FLT_MAX;
#pragma unroll
for (int dd = 0; dd < 2; dd++) {
int d1 = start_d1 + dd;
if (d1 < D1) {
#pragma unroll
for (int hh = 0; hh < 2; hh++) {
int h1 = start_h1 + hh;
if (h1 < H1) {
#pragma unroll
for (int ww = 0; ww < 2; ww++) {
int w1 = start_w1 + ww;
if (w1 < W1) {
int idx = ((n * C + c) * D1 + d1) * H1 * W1 + h1 * W1 + w1;
max_val = max(max_val, input[idx]);
}
}
}
}
}
}
return max_val;
}
// Device function: 3x3x3 pooling over the results of the 2x2x2 pooling
__device__ inline float pool3x3x3(const float* input, int n, int c,
int start_d2, int start_h2, int start_w2,
int D1, int H1, int W1, int C) {
float max_val = -FLT_MAX;
// The intermediate dimensions from 2x2x2 pooling are D2 = D1/2, H2 = H1/2, W2 = W1/2
#pragma unroll
for (int d_off = 0; d_off < 3; d_off++) {
int d2 = start_d2 + d_off;
if (d2 < (D1 / 2)) {
#pragma unroll
for (int h_off = 0; h_off < 3; h_off++) {
int h2 = start_h2 + h_off;
if (h2 < (H1 / 2)) {
#pragma unroll
for (int w_off = 0; w_off < 3; w_off++) {
int w2 = start_w2 + w_off;
if (w2 < (W1 / 2)) {
// Compute starting indices for the 2x2x2 pooling window
int start_d1 = d2 * 2;
int start_h1 = h2 * 2;
int start_w1 = w2 * 2;
float temp = pool2x2x2(input, n, c, start_d1, start_h1, start_w1, D1, H1, W1, C);
max_val = max(max_val, temp);
}
}
}
}
}
}
return max_val;
}
// Main kernel: Each thread computes one element of the final pooled output
__global__ void modular_maxpool_kernel(
const float* __restrict__ input,
float* __restrict__ output,
const int N, const int C,
const int D1, const int H1, const int W1,
const int D3, const int H3, const int W3) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= N * C * D3 * H3 * W3) return;
// Decode output index (n, c, d3, h3, w3)
int w3 = idx % W3;
int h3 = (idx / W3) % H3;
int d3 = (idx / (W3 * H3)) % D3;
int c = (idx / (W3 * H3 * D3)) % C;
int n = idx / (W3 * H3 * D3 * C);
// Calculate starting indices for the 3x3x3 pooling window on the intermediate tensor
// The intermediate tensor dimensions are: D2 = D1/2, H2 = H1/2, W2 = W1/2.
// The second maxpool has kernel size 3 and stride 3, so we compute:
int start_d2 = d3 * 3;
int start_h2 = h3 * 3;
int start_w2 = w3 * 3;
// Compute the final pooled value using the modular device function
float val = pool3x3x3(input, n, c, start_d2, start_h2, start_w2, D1, H1, W1, C);
output[idx] = val;
}
// The forward function applies a conv_transpose3d operation, then the modular max pooling.
// It sums over the channel dimension at the end.
torch::Tensor forward(
torch::Tensor x,
int64_t stride,
int64_t padding,
torch::Tensor conv_transpose,
torch::Tensor conv_transpose_bias) {
x = x.contiguous();
conv_transpose = conv_transpose.contiguous();
conv_transpose_bias = conv_transpose_bias.contiguous();
TORCH_CHECK(x.is_cuda(), "Input x must be a CUDA tensor");
TORCH_CHECK(conv_transpose.is_cuda(), "conv_transpose must be a CUDA tensor");
TORCH_CHECK(conv_transpose_bias.is_cuda(), "conv_transpose_bias must be a CUDA tensor");
// Apply the transposed convolution operation
x = at::conv_transpose3d(
x,
conv_transpose,
conv_transpose_bias,
{stride, stride, stride},
{padding, padding, padding}
);
// Get dimensions after conv_transpose: [N, C, D1, H1, W1]
auto sizes = x.sizes();
const int N = sizes[0];
const int C = sizes[1];
const int D1 = sizes[2];
const int H1 = sizes[3];
const int W1 = sizes[4];
// The two-stage pooling reduces dimensions as follows:
// First max pool (2x2x2): D2 = D1 / 2, H2 = H1 / 2, W2 = W1 / 2
// Second max pool (3x3x3): D3 = D2 / 3 = D1 / 6, H3 = H1 / 6, W3 = W1 / 6
const int D3 = D1 / 6;
const int H3 = H1 / 6;
const int W3 = W1 / 6;
auto output = torch::empty({N, C, D3, H3, W3}, x.options());
// Launch the kernel
const int total_elements = N * C * D3 * H3 * W3;
const int threads = 256;
const int blocks = (total_elements + threads - 1) / threads;
modular_maxpool_kernel<<<blocks, threads>>>(
x.data_ptr<float>(),
output.data_ptr<float>(),
N, C, D1, H1, W1,
D3, H3, W3
);
// Sum over channels (dim=1), keeping the dimension
return output.sum(1, /*keepdim=*/true);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Modular forward pass with device functions for max pooling");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.784 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.688 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 19.592 | % | 0.004 | 5 |
Issued Ipc Active | 0.784 | inst/cycle | 0.000 | 5 |
SM Busy | 19.592 | % | 0.004 | 5 |
Memory Throughput | 2123703289109.182 | byte/second | 434997002420839186432.000 | 5 |
Mem Busy | 37.166 | % | 0.135 | 5 |
Max Bandwidth | 63.374 | % | 0.395 | 5 |
L1/TEX Hit Rate | 81.268 | % | 0.000 | 5 |
L2 Hit Rate | 13.438 | % | 0.000 | 5 |
Mem Pipes Busy | 7.360 | % | 0.006 | 5 |
Warp Cycles Per Issued Instruction | 35.856 | cycle | 0.017 | 5 |
Warp Cycles Per Executed Instruction | 35.894 | cycle | 0.017 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 28.340 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 43.976 | % | 0.000 | 5 |
Achieved Active Warps Per SM | 28.146 | warp | 0.000 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (44.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::conv_transpose3d | ||
CPU Time | 5429941.21 | μs |
Device Time | 4898361.81 | μs |
Self CPU Time | 19539.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 5410401.98 | μs |
Device Time | 4898361.81 | μs |
Self CPU Time | 25615.05 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 5384786.93 | μs |
Device Time | 4898361.81 | μs |
Self CPU Time | 56884.17 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::cudnn_convolution_transpose | ||
CPU Time | 4793449.93 | μs |
Device Time | 3865204.05 | μs |
Self CPU Time | 277228.23 | μs |
Self Device Time | 3865197.49 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaMemsetAsync | ||
CPU Time | 2172794.58 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 2172794.58 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn | ||
CPU Time | 0.00 | μs |
Device Time | 2458013.66 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 2458013.66 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45287 warnings generated when compiling for host. Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.