← Back to Leaderboard

The AI CUDA Engineer 👷

88_Gemm_GroupNorm_Swish_Multiply_Swishoptimized_kernel_base

Level 2 • Task 88
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    gemm_weight: torch.Tensor,
    gemm_bias: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
    multiply_weight: torch.Tensor,
    num_groups: int,
) -> torch.Tensor:
    """
    Performs GEMM, GroupNorm, Swish, Multiply, and Swish operations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        gemm_weight (torch.Tensor): Weight matrix for linear layer of shape (out_features, in_features)
        gemm_bias (torch.Tensor): Bias vector for linear layer of shape (out_features)
        group_norm_weight (torch.Tensor): Weight parameter for group norm of shape (out_features)
        group_norm_bias (torch.Tensor): Bias parameter for group norm of shape (out_features)
        multiply_weight (torch.Tensor): Weight tensor for multiplication of shape (out_features)
        num_groups (int): Number of groups for group normalization

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, gemm_weight, gemm_bias)
    x = F.group_norm(x, num_groups, group_norm_weight, group_norm_bias)
    x = x * torch.sigmoid(x)
    x = x * multiply_weight
    x = x * torch.sigmoid(x)
    return x


class Model(nn.Module):
    """
    Model that performs a GEMM, GroupNorm, Swish, Multiply, and Swish operations.
    """

    def __init__(self, in_features, out_features, num_groups, multiply_weight_shape):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.gemm_weight = gemm.weight
        self.gemm_bias = gemm.bias
        group_norm = nn.GroupNorm(num_groups, out_features)
        self.group_norm_weight = group_norm.weight
        self.group_norm_bias = group_norm.bias
        self.multiply_weight = nn.Parameter(torch.randn(multiply_weight_shape) * 0.02)
        self.num_groups = num_groups

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.gemm_weight,
            self.gemm_bias,
            self.group_norm_weight,
            self.group_norm_bias,
            self.multiply_weight,
            self.num_groups,
        )


batch_size = 128
in_features = 512
out_features = 1024
num_groups = 16
multiply_weight_shape = (out_features,)


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, num_groups, multiply_weight_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a GEMM, GroupNorm, Swish, Multiply, and Swish operations.
    """
    def __init__(self, in_features, out_features, num_groups, multiply_weight_shape):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features)
        self.group_norm = nn.GroupNorm(num_groups, out_features)
        self.multiply_weight = nn.Parameter(torch.randn(multiply_weight_shape) * 0.02) 

    def forward(self, x):
        # (batch_size, in_features) -> (batch_size, out_features)
        x = self.gemm(x)
        # (batch_size, out_features) -> (batch_size, out_features)
        x = self.group_norm(x)
        # (batch_size, out_features) -> (batch_size, out_features)
        x = x * torch.sigmoid(x)
        # (batch_size, out_features) -> (batch_size, out_features)
        x = x * self.multiply_weight
        # (batch_size, out_features) -> (batch_size, out_features)
        x = x * torch.sigmoid(x)
        return x

batch_size = 128
in_features = 512
out_features = 1024
num_groups = 16
multiply_weight_shape = (out_features,)

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, num_groups, multiply_weight_shape]

Kernel Information

/*
Optimized CUDA Kernel: Combines efficient warp-level reductions and 2D grid mapping
for group normalization with two swish activations. The kernel uses a grid of
blocks where blockIdx.x corresponds to the sample index and blockIdx.y corresponds
to the group index, reducing within each group using warp-level primitives.
*/

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <vector>
#include <algorithm>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
  CHECK_CUDA(x);       \
  CHECK_CONTIGUOUS(x)

// Warp-level reduction using __shfl_down_sync
template <typename scalar_t>
__inline__ __device__
scalar_t warpReduceSum(scalar_t val) {
    for (int offset = warpSize/2; offset > 0; offset /= 2)
        val += __shfl_down_sync(0xffffffff, val, offset);
    return val;
}


// Optimized kernel: each block processes one group of one sample.
// Grid: blockIdx.x = sample index, blockIdx.y = group index.
// Each thread handles multiple channels in its group; reduction is done with warp-level primitives.

template<typename scalar_t>
__global__ void module_fn_kernel_optimized(
    const scalar_t* __restrict__ x,         // Input after GEMM, shape (N, C)
    scalar_t* __restrict__ output,            // Output, shape (N, C)
    const scalar_t* __restrict__ group_norm_weight,  // gamma, shape (C)
    const scalar_t* __restrict__ group_norm_bias,    // beta, shape (C)
    const scalar_t* __restrict__ multiply_weight,    // weight, shape (C)
    const int C,                            // Total channels
    const int channels_per_group            // Channels per group
) {
    // Determine sample and group indices
    int n = blockIdx.x;  // sample index
    int g = blockIdx.y;  // group index
    int base = g * channels_per_group;

    scalar_t partial_sum = 0;
    scalar_t partial_sumsq = 0;

    // Each thread processes part of the channels for its group
    for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
        int idx = n * C + base + c;
        scalar_t val = x[idx];
        partial_sum += val;
        partial_sumsq += val * val;
    }

    // Perform warp-level reduction within each warp
    partial_sum = warpReduceSum<scalar_t>(partial_sum);
    partial_sumsq = warpReduceSum<scalar_t>(partial_sumsq);

    int lane = threadIdx.x % warpSize;
    int warpId = threadIdx.x / warpSize;

    // Use shared memory to combine results from different warps (max 32 warps assumed)
    __shared__ scalar_t warp_sum[32];
    __shared__ scalar_t warp_sumsq[32];

    if (lane == 0) {
        warp_sum[warpId] = partial_sum;
        warp_sumsq[warpId] = partial_sumsq;
    }
    __syncthreads();

    scalar_t total_sum = 0;
    scalar_t total_sumsq = 0;
    int numWarps = (blockDim.x + warpSize - 1) / warpSize;

    // First few threads load the per-warp results
    if (threadIdx.x < numWarps) {
        total_sum = warp_sum[threadIdx.x];
        total_sumsq = warp_sumsq[threadIdx.x];
    } 
    // Reduce the warp results using the first warp
    if (threadIdx.x < warpSize) {
        total_sum = warpReduceSum<scalar_t>(total_sum);
        total_sumsq = warpReduceSum<scalar_t>(total_sumsq);
    }

    // Compute mean and inverse standard deviation
    __shared__ scalar_t s_mean;
    __shared__ scalar_t s_inv_std;
    if (threadIdx.x == 0) {
        s_mean = total_sum / channels_per_group;
        scalar_t var = total_sumsq / channels_per_group - s_mean * s_mean;
        s_inv_std = rsqrtf(var + static_cast<scalar_t>(1e-5));
    }
    __syncthreads();

    // Final pass: compute normalized activation and apply two swish activations
    for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
        int idx = n * C + base + c;
        scalar_t val = x[idx];
        scalar_t normalized = (val - s_mean) * s_inv_std;

        // Apply GroupNorm: scale and shift
        scalar_t gamma = group_norm_weight[base + c];
        scalar_t beta  = group_norm_bias[base + c];
        scalar_t y = normalized * gamma + beta;

        // First Swish activation
        scalar_t sigmoid_y = static_cast<scalar_t>(1.0) / (static_cast<scalar_t>(1.0) + expf(-y));
        y = y * sigmoid_y;

        // Multiply by weight and apply second Swish
        scalar_t w = multiply_weight[base + c];
        y = y * w;
        sigmoid_y = static_cast<scalar_t>(1.0) / (static_cast<scalar_t>(1.0) + expf(-y));
        output[idx] = y * sigmoid_y;
    }
}

// Host function: performs GEMM then launches the optimized kernel for GroupNorm+Swish activations

torch::Tensor module_fn_cuda_forward(
    torch::Tensor x,
    torch::Tensor gemm_weight,
    torch::Tensor gemm_bias,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    torch::Tensor multiply_weight,
    int64_t num_groups
) {
    // Perform GEMM: x_linear = x.matmul(gemm_weight.t()) + gemm_bias
    auto x_linear = torch::addmm(gemm_bias, x, gemm_weight.t());
    auto N = x_linear.size(0);
    auto C = x_linear.size(1);
    
    torch::Tensor output = torch::empty_like(x_linear);
    int channels_per_group = C / num_groups;

    // Grid: one block per (sample, group)
    dim3 blocks(N, num_groups);
    // Determine thread block size (capped at 1024 threads)
    int threads = std::min(channels_per_group, 1024);

    AT_DISPATCH_FLOATING_TYPES(x_linear.scalar_type(), "module_fn_cuda_forward", ([&] {
        module_fn_kernel_optimized<scalar_t><<<blocks, threads>>>(
            x_linear.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            group_norm_weight.data_ptr<scalar_t>(),
            group_norm_bias.data_ptr<scalar_t>(),
            multiply_weight.data_ptr<scalar_t>(),
            C,
            channels_per_group
        );
    }));

    return output;
}

// C++ interface

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor gemm_weight,
    torch::Tensor gemm_bias,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias,
    torch::Tensor multiply_weight,
    int64_t num_groups
) {
    CHECK_INPUT(x);
    CHECK_INPUT(gemm_weight);
    CHECK_INPUT(gemm_bias);
    CHECK_INPUT(group_norm_weight);
    CHECK_INPUT(group_norm_bias);
    CHECK_INPUT(multiply_weight);

    return module_fn_cuda_forward(
        x,
        gemm_weight,
        gemm_bias,
        group_norm_weight,
        group_norm_bias,
        multiply_weight,
        num_groups
    );
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized module forward");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.610 inst/cycle 0.001 5
Executed Ipc Elapsed 0.882 inst/cycle 0.000 5
Issue Slots Busy 40.896 % 0.406 5
Issued Ipc Active 1.638 inst/cycle 0.001 5
SM Busy 40.896 % 0.406 5
Memory Throughput 93476334677.220 byte/second 972133353889158528.000 5
Mem Busy 10.550 % 0.014 5
Max Bandwidth 9.536 % 0.010 5
L1/TEX Hit Rate 18.520 % 0.000 5
L2 Hit Rate 78.940 % 0.316 5
Mem Pipes Busy 13.020 % 0.019 5
Warp Cycles Per Issued Instruction 15.630 cycle 0.004 5
Warp Cycles Per Executed Instruction 15.874 cycle 0.004 5
Avg. Active Threads Per Warp 29.020 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.460 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 32.000 block 0.000 5
Block Limit Shared Mem 46.000 block 0.000 5
Block Limit Warps 32.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 40.262 % 0.598 5
Achieved Active Warps Per SM 25.768 warp 0.245 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (25.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (40.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 521243.92 μs
Device Time 186.01 μs
Self CPU Time 57.53 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 521186.39 μs
Device Time 186.01 μs
Self CPU Time 108.41 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 534577.05 μs
Device Time 0.00 μs
Self CPU Time 14070.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 520118.12 μs
Device Time 0.00 μs
Self CPU Time 520118.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 50695.68 μs
Device Time 413527.31 μs
Self CPU Time 11898.37 μs
Self Device Time 413527.31 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 59229.01 μs
Device Time 413527.31 μs
Self CPU Time 8556.40 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::addmm
CPU Time 352088.45 μs
Device Time 104775.07 μs
Self CPU Time 129771.60 μs
Self Device Time 104775.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas
CPU Time 0.00 μs
Device Time 104775.07 μs
Self CPU Time 0.00 μs
Self Device Time 104775.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 413527.31 μs
Self CPU Time 0.00 μs
Self Device Time 413527.31 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45309 warnings generated when compiling for host.
Suppressed 45329 warnings (45282 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:13:35 bugprone-macro-parentheses
13 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:14:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
14 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:37:5: warning: 3 adjacent parameters of 'module_fn_kernel_optimized' of similar type ('const scalar_t *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
37 | const scalar_t* __restrict__ group_norm_weight, // gamma, shape (C)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
38 | const scalar_t* __restrict__ group_norm_bias, // beta, shape (C)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39 | const scalar_t* __restrict__ multiply_weight, // weight, shape (C)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:37:34: note: the first parameter in the range is 'group_norm_weight'
37 | const scalar_t* __restrict__ group_norm_weight, // gamma, shape (C)
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:39:34: note: the last parameter in the range is 'multiply_weight'
39 | const scalar_t* __restrict__ multiply_weight, // weight, shape (C)
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:40:5: warning: 2 adjacent parameters of 'module_fn_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
40 | const int C, // Total channels
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41 | const int channels_per_group // Channels per group
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:40:15: note: the first parameter in the range is 'C'
40 | const int C, // Total channels
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:41:15: note: the last parameter in the range is 'channels_per_group'
41 | const int channels_per_group // Channels per group
| ^~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:44:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | int n = blockIdx.x; // sample index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:45:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | int g = blockIdx.y; // group index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:52:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:52:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:63:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
63 | int lane = threadIdx.x % warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:64:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
64 | int warpId = threadIdx.x / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:78:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | int numWarps = (blockDim.x + warpSize - 1) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:102:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:102:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | for (int c = threadIdx.x; c < channels_per_group; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:127:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
127 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:128:19: warning: the parameter 'gemm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
128 | torch::Tensor gemm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:129:5: warning: 2 adjacent parameters of 'module_fn_cuda_forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
129 | torch::Tensor gemm_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~
130 | torch::Tensor group_norm_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:129:19: note: the first parameter in the range is 'gemm_bias'
129 | torch::Tensor gemm_bias,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:130:19: note: the last parameter in the range is 'group_norm_weight'
130 | torch::Tensor group_norm_weight,
| ^~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:129:19: warning: the parameter 'gemm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
129 | torch::Tensor gemm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:141:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | int channels_per_group = C / num_groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:148:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
148 | AT_DISPATCH_FLOATING_TYPES(x_linear.scalar_type(), "module_fn_cuda_forward", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:166:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
166 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:167:19: warning: the parameter 'gemm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
167 | torch::Tensor gemm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:168:19: warning: the parameter 'gemm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
168 | torch::Tensor gemm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:169:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
169 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:170:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
170 | torch::Tensor group_norm_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_88/b4_s1_optimized_kernel/base/base.cu:171:19: warning: the parameter 'multiply_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
171 | torch::Tensor multiply_weight,
| ^
| const &