← Back to Leaderboard

The AI CUDA Engineer 👷

9_Matmul_Subtract_Multiply_ReLUtiled_matmul_shared_mem_base

Level 2 • Task 9
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    linear_weight: torch.Tensor,
    linear_bias: torch.Tensor,
    subtract_value: float,
    multiply_value: float,
) -> torch.Tensor:
    """
    Applies linear transformation, subtraction, multiplication and ReLU activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        linear_weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        linear_bias (torch.Tensor): Bias vector of shape (out_features)
        subtract_value (float): Value to subtract
        multiply_value (float): Value to multiply

    Returns:
        torch.Tensor: Output tensor after applying linear transformation, subtraction,
            multiplication and ReLU, with shape (batch_size, out_features)
    """
    x = F.linear(x, linear_weight, linear_bias)
    x = x - subtract_value
    x = x * multiply_value
    x = torch.relu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a matrix multiplication, subtraction, multiplication, and ReLU activation.
    """

    def __init__(self, in_features, out_features, subtract_value, multiply_value):
        super(Model, self).__init__()
        self.linear_weight = nn.Parameter(torch.randn(out_features, in_features) * 0.02)
        self.linear_bias = nn.Parameter(torch.randn(out_features) * 0.02)
        self.subtract_value = subtract_value
        self.multiply_value = multiply_value

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.linear_weight,
            self.linear_bias,
            self.subtract_value,
            self.multiply_value,
        )


batch_size = 128
in_features = 10
out_features = 5
subtract_value = 2.0
multiply_value = 1.5


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, subtract_value, multiply_value]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a matrix multiplication, subtraction, multiplication, and ReLU activation.
    """
    def __init__(self, in_features, out_features, subtract_value, multiply_value):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.subtract_value = subtract_value
        self.multiply_value = multiply_value

    def forward(self, x):
        x = self.linear(x)
        x = x - self.subtract_value
        x = x * self.multiply_value
        x = torch.relu(x)
        return x

batch_size = 128
in_features = 10
out_features = 5
subtract_value = 2.0
multiply_value = 1.5

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, subtract_value, multiply_value]

Kernel Information

Related Kernels (Level 2, Task 9 • 9_Matmul_Subtract_Multiply_ReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_loop_kernel_base 0.01 4.05 2.63
🥇 9_Matmul_Subtract_Multiply_ReLU 0.01 4.05 2.63
🥇 9_matmul_subtract_multiply_relu_unroll_base 0.01 4.05 2.63
🥇 9_matmul_subtract_multiply_relu_unroll_base 0.01 4.05 2.63
🥇 modular_matmul_subtract_multiply_relu_base 0.01 4.05 2.63
🥇 efficient_indexing_tile_kernel_base 0.01 4.05 2.63
🥇 efficient_thread_block_mapping_base 0.01 4.05 2.63
🥇 warp_divergence_optimized_base 0.01 4.05 2.63
🥇 warp_level_fused_kernel_base 0.01 4.05 2.63
🥇 shared_mem_tiled_base 0.01 4.05 2.63
🥇 tiled_sharedmem_optimized_base 0.01 4.05 2.63
🥇 warp_level_reduction_kernel_base 0.01 4.05 2.63
🥇 strided_thread_blocks_base_base 0.01 4.05 2.63
🥇 optimized_block_size_base 0.01 4.05 2.63
🥇 double_buffered_tiled_kernel_base 0.01 4.05 2.63
🥇 coalesced_memory_matmul_base_base 0.01 4.05 2.63
🥇 tiled_matmul_shared_mem_base 0.01 4.05 2.63
🥇 optimized_tiled_2d_base 0.01 4.05 2.63
🥇 matmul_1d_thread_mapping_base 0.01 4.05 2.63
🥇 modularized_matmul_ops_base 0.01 4.05 2.63
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

template <typename scalar_t>
__global__ void tiled_matmul_kernel(
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ weight,
    const scalar_t* __restrict__ bias,
    scalar_t* __restrict__ output,
    int batch_size,
    int in_features,
    int out_features,
    float subtract_val,
    float multiply_val) {
    
    const int TILE = 16;
    __shared__ scalar_t input_tile[TILE][TILE];
    __shared__ scalar_t weight_tile[TILE][TILE];
    
    int row = blockIdx.x * TILE + threadIdx.x;
    int col = blockIdx.y * TILE + threadIdx.y;
    scalar_t sum = 0;

    for (int t = 0; t < (in_features + TILE - 1) / TILE; ++t) {
        int input_col = t * TILE + threadIdx.y;
        if (row < batch_size && input_col < in_features)
            input_tile[threadIdx.x][threadIdx.y] = input[row * in_features + input_col];
        else
            input_tile[threadIdx.x][threadIdx.y] = 0;

        int weight_row = col;
        int weight_col = t * TILE + threadIdx.x;
        if (weight_row < out_features && weight_col < in_features)
            weight_tile[threadIdx.x][threadIdx.y] = weight[weight_row * in_features + weight_col];
        else
            weight_tile[threadIdx.x][threadIdx.y] = 0;

        __syncthreads();

        for (int k = 0; k < TILE; ++k)
            sum += input_tile[threadIdx.x][k] * weight_tile[k][threadIdx.y];

        __syncthreads();
    }

    if (row < batch_size && col < out_features) {
        sum += bias[col];
        sum = (sum - subtract_val) * multiply_val;
        output[row * out_features + col] = max(sum, scalar_t(0));
    }
}

torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor weight,
    torch::Tensor bias,
    float subtract_value,
    float multiply_value) {
    
    auto batch_size = input.size(0);
    auto in_features = input.size(1);
    auto out_features = weight.size(0);
    
    auto output = torch::empty({batch_size, out_features}, input.options());
    
    dim3 blocks(
        (batch_size + 15) / 16,
        (out_features + 15) / 16
    );
    dim3 threads(16, 16);
    
    AT_DISPATCH_FLOATING_TYPES(input.type(), "tiled_matmul_kernel", ([&] {
        tiled_matmul_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            weight.data_ptr<scalar_t>(),
            bias.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            batch_size,
            in_features,
            out_features,
            subtract_value,
            multiply_value
        );
    }));
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Tiled matmul with shared memory optimization");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.292 inst/cycle 0.000 5
Executed Ipc Elapsed 0.010 inst/cycle 0.000 5
Issue Slots Busy 7.668 % 0.066 5
Issued Ipc Active 0.306 inst/cycle 0.000 5
SM Busy 7.668 % 0.066 5
Memory Throughput 2479760720.156 byte/second 3068304566428937.500 5
Mem Busy 8.148 % 0.048 5
Max Bandwidth 4.186 % 0.008 5
L1/TEX Hit Rate 68.302 % 0.178 5
L2 Hit Rate 101.770 % 0.024 5
Mem Pipes Busy 0.210 % 0.000 5
Warp Cycles Per Issued Instruction 22.714 cycle 0.689 5
Warp Cycles Per Executed Instruction 23.958 cycle 0.768 5
Avg. Active Threads Per Warp 31.730 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.440 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 10.586 % 0.009 5
Achieved Active Warps Per SM 6.776 warp 0.004 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (10.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 433794.54 μs
Device Time 5.57 μs
Self CPU Time 53.09 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 433741.45 μs
Device Time 5.57 μs
Self CPU Time 117.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 433477.23 μs
Device Time 0.00 μs
Self CPU Time 102.46 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 401098.03 μs
Device Time 0.00 μs
Self CPU Time 401098.03 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 480021.13 μs
Device Time 22687.16 μs
Self CPU Time 480021.13 μs
Self Device Time 22687.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void tiled_matmul_kernel<float>(float const*, float const*, float const*, float*, int, int, int, float, float)
CPU Time 0.00 μs
Device Time 28950.16 μs
Self CPU Time 0.00 μs
Self Device Time 28950.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 19104.97 μs
Device Time 41935.11 μs
Self CPU Time 19104.97 μs
Self Device Time 41935.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 63996.19 μs
Device Time 626915.78 μs
Self CPU Time 14366.43 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 49630.75 μs
Device Time 626915.78 μs
Self CPU Time 15381.97 μs
Self Device Time 626915.78 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 626915.78 μs
Self CPU Time 0.00 μs
Self Device Time 626915.78 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45289 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:7:5 bugprone-easily-swappable-parameters
7 | const scalar_t* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 | const scalar_t* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const scalar_t* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:7:34: note: the first parameter in the range is 'input'
7 | const scalar_t* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:9:34: note: the last parameter in the range is 'bias'
9 | const scalar_t* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:13:5: warning: 2 adjacent parameters of 'tiled_matmul_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int out_features,
| ^~~~~~~~~~~~~~~~~
14 | float subtract_val,
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:13:9: note: the first parameter in the range is 'out_features'
13 | int out_features,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:14:11: note: the last parameter in the range is 'subtract_val'
14 | float subtract_val,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:14:5: note: 'int' and 'float' may be implicitly converted
14 | float subtract_val,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:21:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int row = blockIdx.x * TILE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:22:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int col = blockIdx.y * TILE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:26:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int input_col = t * TILE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:33:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | int weight_col = t * TILE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:73:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
73 | AT_DISPATCH_FLOATING_TYPES(input.type(), "tiled_matmul_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:73:5: warning: 'scalar_type' is deprecated: passing at::DeprecatedTypeProperties to an AT_DISPATCH macro is deprecated, pass an at::ScalarType instead [clang-diagnostic-deprecated-declarations]
73 | AT_DISPATCH_FLOATING_TYPES(input.type(), "tiled_matmul_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:3: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:218:36: note: expanded from macro 'AT_DISPATCH_SWITCH'
218 | at::ScalarType _st = ::detail::scalar_type(the_type); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:106:1: note: 'scalar_type' has been explicitly marked deprecated here
106 | C10_DEPRECATED_MESSAGE(
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Deprecated.h:24:43: note: expanded from macro 'C10_DEPRECATED_MESSAGE'
24 | #define C10_DEPRECATED_MESSAGE(message) [[deprecated(message)]]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b1_s3_tiled_matmul_shared_mem/base/base.cu:73:38: warning: 'type' is deprecated: Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device(). [clang-diagnostic-deprecated-declarations]
73 | AT_DISPATCH_FLOATING_TYPES(input.type(), "tiled_matmul_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/core/TensorBody.h:224:3: note: 'type' has been explicitly marked deprecated here
224 | C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Deprecated.h:24:43: note: expanded from macro 'C10_DEPRECATED_MESSAGE'
24 | #define C10_DEPRECATED_MESSAGE(message) [[deprecated(message)]]
| ^