← Back to Leaderboard

The AI CUDA Engineer 👷

9_Matmul_Subtract_Multiply_ReLUunrolled_loop_kernel_base

Level 2 • Task 9
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    linear_weight: torch.Tensor,
    linear_bias: torch.Tensor,
    subtract_value: float,
    multiply_value: float,
) -> torch.Tensor:
    """
    Applies linear transformation, subtraction, multiplication and ReLU activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        linear_weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        linear_bias (torch.Tensor): Bias vector of shape (out_features)
        subtract_value (float): Value to subtract
        multiply_value (float): Value to multiply

    Returns:
        torch.Tensor: Output tensor after applying linear transformation, subtraction,
            multiplication and ReLU, with shape (batch_size, out_features)
    """
    x = F.linear(x, linear_weight, linear_bias)
    x = x - subtract_value
    x = x * multiply_value
    x = torch.relu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a matrix multiplication, subtraction, multiplication, and ReLU activation.
    """

    def __init__(self, in_features, out_features, subtract_value, multiply_value):
        super(Model, self).__init__()
        self.linear_weight = nn.Parameter(torch.randn(out_features, in_features) * 0.02)
        self.linear_bias = nn.Parameter(torch.randn(out_features) * 0.02)
        self.subtract_value = subtract_value
        self.multiply_value = multiply_value

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.linear_weight,
            self.linear_bias,
            self.subtract_value,
            self.multiply_value,
        )


batch_size = 128
in_features = 10
out_features = 5
subtract_value = 2.0
multiply_value = 1.5


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, subtract_value, multiply_value]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a matrix multiplication, subtraction, multiplication, and ReLU activation.
    """
    def __init__(self, in_features, out_features, subtract_value, multiply_value):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.subtract_value = subtract_value
        self.multiply_value = multiply_value

    def forward(self, x):
        x = self.linear(x)
        x = x - self.subtract_value
        x = x * self.multiply_value
        x = torch.relu(x)
        return x

batch_size = 128
in_features = 10
out_features = 5
subtract_value = 2.0
multiply_value = 1.5

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, subtract_value, multiply_value]

Kernel Information

Related Kernels (Level 2, Task 9 • 9_Matmul_Subtract_Multiply_ReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_loop_kernel_base 0.01 4.05 2.63
🥇 9_Matmul_Subtract_Multiply_ReLU 0.01 4.05 2.63
🥇 9_matmul_subtract_multiply_relu_unroll_base 0.01 4.05 2.63
🥇 9_matmul_subtract_multiply_relu_unroll_base 0.01 4.05 2.63
🥇 modular_matmul_subtract_multiply_relu_base 0.01 4.05 2.63
🥇 efficient_indexing_tile_kernel_base 0.01 4.05 2.63
🥇 efficient_thread_block_mapping_base 0.01 4.05 2.63
🥇 warp_divergence_optimized_base 0.01 4.05 2.63
🥇 warp_level_fused_kernel_base 0.01 4.05 2.63
🥇 shared_mem_tiled_base 0.01 4.05 2.63
🥇 tiled_sharedmem_optimized_base 0.01 4.05 2.63
🥇 warp_level_reduction_kernel_base 0.01 4.05 2.63
🥇 strided_thread_blocks_base_base 0.01 4.05 2.63
🥇 optimized_block_size_base 0.01 4.05 2.63
🥇 double_buffered_tiled_kernel_base 0.01 4.05 2.63
🥇 coalesced_memory_matmul_base_base 0.01 4.05 2.63
🥇 tiled_matmul_shared_mem_base 0.01 4.05 2.63
🥇 optimized_tiled_2d_base 0.01 4.05 2.63
🥇 matmul_1d_thread_mapping_base 0.01 4.05 2.63
🥇 modularized_matmul_ops_base 0.01 4.05 2.63
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

template <typename scalar_t>
__global__ void unrolled_loop_kernel(
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ weight,
    const scalar_t* __restrict__ bias,
    scalar_t* __restrict__ output,
    const int batch_size,
    const int in_features,
    const int out_features,
    const float subtract_value,
    const float multiply_value) {

    const int row = blockIdx.x;
    const int col = blockIdx.y;
    const int lane = threadIdx.x;

    scalar_t sum = 0;
    const int input_base = row * in_features;
    const int weight_base = col * in_features;

    // Manually unrolled loop with 4x unrolling
    #pragma unroll 4
    for (int k = lane; k < in_features; k += 32) {
        sum += input[input_base + k] * weight[weight_base + k];
    }

    // Improved warp reduction with unrolled steps
    unsigned mask = 0xffffffff;
    #pragma unroll
    for (int offset = 16; offset > 0; offset /= 2) {
        sum += __shfl_down_sync(mask, sum, offset);
    }

    if (lane == 0) {
        scalar_t result = sum + bias[col];
        result = (result - subtract_value) * multiply_value;
        output[row * out_features + col] = result > 0 ? result : 0;
    }
}

torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor weight,
    torch::Tensor bias,
    float subtract_value,
    float multiply_value) {

    const int batch_size = input.size(0);
    const int in_features = input.size(1);
    const int out_features = weight.size(0);

    auto output = torch::empty({batch_size, out_features}, input.options());

    dim3 blocks(batch_size, out_features);
    dim3 threads(32);

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "unrolled_loop_kernel", ([&] {
        unrolled_loop_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            weight.data_ptr<scalar_t>(),
            bias.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            batch_size,
            in_features,
            out_features,
            subtract_value,
            multiply_value
        );
    }));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Matmul with fused ops using unrolled loops");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.162 inst/cycle 0.000 5
Executed Ipc Elapsed 0.060 inst/cycle 0.000 5
Issue Slots Busy 4.302 % 0.035 5
Issued Ipc Active 0.174 inst/cycle 0.000 5
SM Busy 4.302 % 0.035 5
Memory Throughput 2480384974.502 byte/second 713577975951293.250 5
Mem Busy 8.796 % 0.003 5
Max Bandwidth 4.724 % 0.001 5
L1/TEX Hit Rate 35.960 % 0.000 5
L2 Hit Rate 101.558 % 0.014 5
Mem Pipes Busy 1.802 % 0.000 5
Warp Cycles Per Issued Instruction 26.976 cycle 1.409 5
Warp Cycles Per Executed Instruction 28.866 cycle 1.607 5
Avg. Active Threads Per Warp 14.770 0.000 5
Avg. Not Predicated Off Threads Per Warp 14.340 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 84.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 64.000 block 0.000 5
Theoretical Active Warps per SM 32.000 warp 0.000 5
Theoretical Occupancy 50.000 % 0.000 5
Achieved Occupancy 7.396 % 0.000 5
Achieved Active Warps Per SM 4.734 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 14.8 threads being active per cycle. This is further reduced to 14.3 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. This kernel's theoretical occupancy (50.0%) is limited by the required amount of shared memory. The difference between calculated theoretical (50.0%) and measured achieved occupancy (7.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 682495.57 μs
Device Time 5.60 μs
Self CPU Time 58.04 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 682437.53 μs
Device Time 5.60 μs
Self CPU Time 105.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 682188.34 μs
Device Time 0.00 μs
Self CPU Time 104.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 681226.49 μs
Device Time 0.00 μs
Self CPU Time 681226.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 269512.80 μs
Device Time 11653.82 μs
Self CPU Time 269512.80 μs
Self Device Time 11653.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void unrolled_loop_kernel<float>(float const*, float const*, float const*, float*, int, int, int, float, float)
CPU Time 0.00 μs
Device Time 15849.16 μs
Self CPU Time 0.00 μs
Self Device Time 15849.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 9968.17 μs
Device Time 23063.99 μs
Self CPU Time 9968.17 μs
Self Device Time 23063.99 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 44079.78 μs
Device Time 350914.30 μs
Self CPU Time 7136.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 36944.45 μs
Device Time 350914.30 μs
Self CPU Time 8670.28 μs
Self Device Time 350914.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 350992.12 μs
Self CPU Time 0.00 μs
Self Device Time 350992.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45289 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:8:5 bugprone-easily-swappable-parameters
8 | const scalar_t* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const scalar_t* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:8:34: note: the first parameter in the range is 'weight'
8 | const scalar_t* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:9:34: note: the last parameter in the range is 'bias'
9 | const scalar_t* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:11:5: warning: 4 adjacent parameters of 'unrolled_loop_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
11 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
12 | const int in_features,
| ~~~~~~~~~~~~~~~~~~~~~~
13 | const int out_features,
| ~~~~~~~~~~~~~~~~~~~~~~~
14 | const float subtract_value,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:11:15: note: the first parameter in the range is 'batch_size'
11 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:14:17: note: the last parameter in the range is 'subtract_value'
14 | const float subtract_value,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:14:5: note: 'const int' and 'const float' may be implicitly converted: 'const int' (as 'int') -> 'const float' (as 'float'), 'const float' (as 'float') -> 'const int' (as 'int')
14 | const float subtract_value,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:17:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | const int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:18:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | const int col = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:19:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | const int lane = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:52:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | const int batch_size = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:53:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
53 | const int in_features = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:54:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
54 | const int out_features = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_translate/level_2/task_9/b10_s3_unrolled_loop_kernel/base/base.cu:61:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
61 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "unrolled_loop_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^