← Back to Leaderboard

The AI CUDA Engineer 👷

90_Conv3d_LeakyReLU_Sum_Clamp_GELUaligned_vectorized_ldg_90_conv3d_edit_1

Level 2 • Task 90
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    sum_tensor: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution, LeakyReLU, tensor addition, clamping and GELU activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        conv_weight (torch.Tensor): 3D convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Bias tensor for 3D convolution of shape (out_channels)
        sum_tensor (torch.Tensor): Tensor to add of shape (out_channels, 1, 1, 1)

    Returns:
        torch.Tensor: Output tensor after applying convolution, LeakyReLU, addition,
            clamping and GELU activation
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias)
    x = F.leaky_relu(x, negative_slope=0.2)
    x = x + sum_tensor
    x = torch.clamp(x, min=-1.0, max=1.0)
    x = F.gelu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies LeakyReLU, sums with a tensor, clamps, and applies GELU activation.
    """

    def __init__(self, in_channels, out_channels, kernel_size, sum_tensor_shape):
        super(Model, self).__init__()
        conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = conv.bias
        self.sum_tensor = nn.Parameter(torch.randn(sum_tensor_shape) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias, self.sum_tensor)


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
sum_tensor_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, sum_tensor_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies LeakyReLU, sums with a tensor, clamps, and applies GELU activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, sum_tensor_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.sum_tensor = nn.Parameter(torch.randn(sum_tensor_shape)*0.02)

    def forward(self, x):
        x = self.conv(x)
        x = torch.nn.functional.leaky_relu(x, negative_slope=0.2)
        x = x + self.sum_tensor
        x = torch.clamp(x, min=-1.0, max=1.0)
        x = torch.nn.functional.gelu(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
sum_tensor_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, sum_tensor_shape]

Kernel Information

Related Kernels (Level 2, Task 90 • 90_Conv3d_LeakyReLU_Sum_Clamp_GELU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 aligned_vectorized_ldg_90_conv3d_edit_1 0.79 1.25 0.66
🥈 aligned_vectorized_ldg_90_conv3d_base 0.80 1.24 0.66
🥉 modular_device_functions_base 0.81 1.21 0.65
🥉 load_balanced_kernel_base_base 0.81 1.21 0.65
5 constant_memory_optimization_base 0.82 1.21 0.65
6 coalesced_mem_access_opt_base 0.82 1.20 0.64
7 atomic_minimal_usage_kernel_opt_base 0.83 1.20 0.64
7 atomic_minimal_usage_kernel_opt_edit_1 0.83 1.20 0.64
9 modular_device_functions_v2_base 0.83 1.20 0.64
10 balanced_workload_distribution_base 0.83 1.19 0.64
11 warp_primitives_based_kernel_edit_1 0.83 1.19 0.63
12 optimized_strided_loop_base_base 0.83 1.19 0.63
13 gridstride_const_base 0.84 1.18 0.63
13 block_size_256_kernel_base 0.84 1.18 0.63
15 warp_divergence_free_base 0.84 1.18 0.63
15 modular_device_functions_base 0.84 1.18 0.63
17 optimized_kernel_combination_base 0.84 1.18 0.63
18 multidim_indexed_kernel_base 0.84 1.18 0.63
18 const_mem_conv3d_leakyrelu_sumclamp_gelu_base 0.84 1.18 0.63
20 90_Conv3d_LeakyReLU_Sum_Clamp_GELU 0.84 1.17 0.63
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>
#include <vector>
#include <cmath>
#include <cstdint>

// This kernel processes the main part of the tensor in groups of 4 elements using 128-bit aligned loads/stores via float4.
__global__ void my_kernel_vectorized(
    const float* __restrict__ input,
    const float* __restrict__ sum_tensor,
    float* __restrict__ output,
    const int64_t num_vectorized,
    const int64_t width,
    const int64_t height,
    const int64_t depth,
    const int64_t channels) {

    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if (id < num_vectorized) {
        int64_t base = id * 4;
        // Cast input to float4 pointer and use __ldg() for a 128-bit aligned read
        const float4* input4 = reinterpret_cast<const float4*>(input);
        float4 in_val = __ldg(&input4[id]);
        float4 res;

        // Process each element in the vector
        #pragma unroll
        for (int i = 0; i < 4; i++) {
            int64_t idx = base + i;
            // Compute the 5D tensor indices given the flattened index idx
            int64_t w = idx % width;
            int64_t h = (idx / width) % height;
            int64_t d = (idx / (width * height)) % depth;
            int64_t c = (idx / (width * height * depth)) % channels;
            
            float x;
            if (i == 0) x = in_val.x;
            else if (i == 1) x = in_val.y;
            else if (i == 2) x = in_val.z;
            else x = in_val.w;
            
            // Use branchless LeakyReLU
            float y = fmaxf(x, 0.2f * x);
            // Add bias from sum_tensor using __ldg() for read-only access
            y += __ldg(&sum_tensor[c]);
            // Clamp the value to [-1, 1]
            y = fmaxf(fminf(y, 1.0f), -1.0f);
            // Apply GELU activation
            float cdf = 0.5f * (1.0f + tanhf(0.7978845608f * (y + 0.044715f * y * y * y)));
            y = y * cdf;
            
            // Assign the computed value to the corresponding component
            if (i == 0) res.x = y;
            else if (i == 1) res.y = y;
            else if (i == 2) res.z = y;
            else res.w = y;
        }
        
        // Write back the result using a 128-bit aligned store
        float4* output4 = reinterpret_cast<float4*>(output);
        output4[id] = res;
    }
}

// This kernel processes any remaining elements that do not fit into a group of 4
__global__ void my_kernel_remainder(
    const float* __restrict__ input,
    const float* __restrict__ sum_tensor,
    float* __restrict__ output,
    const int64_t start,
    const int64_t num_elements,
    const int64_t width,
    const int64_t height,
    const int64_t depth,
    const int64_t channels) {
    
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int64_t global_idx = start + idx;
    if (global_idx < num_elements) {
        float x = __ldg(&input[global_idx]);
        float y = fmaxf(x, 0.2f * x);
        int64_t w = global_idx % width;
        int64_t h = (global_idx / width) % height;
        int64_t d = (global_idx / (width * height)) % depth;
        int64_t c = (global_idx / (width * height * depth)) % channels;
        y += __ldg(&sum_tensor[c]);
        y = fmaxf(fminf(y, 1.0f), -1.0f);
        float cdf = 0.5f * (1.0f + tanhf(0.7978845608f * (y + 0.044715f * y * y * y)));
        output[global_idx] = y * cdf;
    }
}

// Launcher that selects between vectorized and remainder kernels
void my_kernel_launcher(
    torch::Tensor& x,
    torch::Tensor& sum_tensor) {
    
    const int64_t num_elements = x.numel();
    const int64_t batch_size = x.size(0);
    const int64_t channels = x.size(1);
    const int64_t depth = x.size(2);
    const int64_t height = x.size(3);
    const int64_t width = x.size(4);
    
    // Calculate the number of groups of 4 elements and remainder
    int64_t num_vectorized = num_elements / 4;
    int64_t remainder = num_elements % 4;
    
    // Launch the vectorized kernel with 128 threads per block for better occupancy
    int threads = 128;
    int blocks = (num_vectorized + threads - 1) / threads;
    my_kernel_vectorized<<<blocks, threads>>>(
        x.data_ptr<float>(),
        sum_tensor.data_ptr<float>(),
        x.data_ptr<float>(),
        num_vectorized,
        width,
        height,
        depth,
        channels
    );
    
    // Launch the remainder kernel if there are leftover elements
    if (remainder > 0) {
        // Use fixed block size of 128 threads for better efficiency
        int threads_rem = 128;
        int blocks_rem = (remainder + threads_rem - 1) / threads_rem;
        int64_t start = num_vectorized * 4;
        my_kernel_remainder<<<blocks_rem, threads_rem>>>(
            x.data_ptr<float>(),
            sum_tensor.data_ptr<float>(),
            x.data_ptr<float>(),
            start,
            num_elements,
            width,
            height,
            depth,
            channels
        );
    }
    
    cudaDeviceSynchronize();
}

// Forward function that performs the 3D convolution and applies the custom CUDA kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias,
    torch::Tensor sum_tensor) {

    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");
    TORCH_CHECK(sum_tensor.is_cuda(), "sum_tensor must be a CUDA tensor");
    TORCH_CHECK(x.scalar_type() == at::kFloat, "x must be of type float32");

    // Perform 3D convolution
    auto x_conv = at::conv3d(x, conv_weight, conv_bias);

    // Ensure output is contiguous
    auto output = x_conv.contiguous();

    // Apply the optimized kernel with aligned 128-bit memory accesses using __ldg()
    my_kernel_launcher(output, sum_tensor);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Custom forward function (CUDA) with aligned 128-bit vectorized loads/stores");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv3d
CPU Time 340047.79 μs
Device Time 4084475.57 μs
Self CPU Time 10572.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 329475.03 μs
Device Time 4084475.57 μs
Self CPU Time 13800.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 315674.06 μs
Device Time 4084475.57 μs
Self CPU Time 28507.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 220756.42 μs
Device Time 3545900.29 μs
Self CPU Time 158393.77 μs
Self Device Time 3545900.29 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3545898.79 μs
Self CPU Time 0.00 μs
Self Device Time 3545898.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 4853687.87 μs
Device Time 76968.09 μs
Self CPU Time 4853687.87 μs
Self Device Time 76968.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45295 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:10:5 bugprone-easily-swappable-parameters
10 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ sum_tensor,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:10:31: note: the first parameter in the range is 'input'
10 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:11:31: note: the last parameter in the range is 'sum_tensor'
11 | const float* __restrict__ sum_tensor,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:13:5: warning: 2 adjacent parameters of 'my_kernel_vectorized' of similar type ('const int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | const int64_t num_vectorized,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 | const int64_t width,
| ~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:13:19: note: the first parameter in the range is 'num_vectorized'
13 | const int64_t num_vectorized,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:14:19: note: the last parameter in the range is 'width'
14 | const int64_t width,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:19:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int id = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:21:24: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
21 | int64_t base = id * 4;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:21:24: note: make conversion explicit to silence this warning
4 | int64_t base = id * 4;
| ^~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:21:24: note: perform multiplication in a wider type
21 | int64_t base = id * 4;
| ^~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:32:21: warning: Value stored to 'w' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
32 | int64_t w = idx % width;
| ^ ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:32:21: note: Value stored to 'w' during its initialization is never read
32 | int64_t w = idx % width;
| ^ ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:33:21: warning: Value stored to 'h' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
33 | int64_t h = (idx / width) % height;
| ^ ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:33:21: note: Value stored to 'h' during its initialization is never read
33 | int64_t h = (idx / width) % height;
| ^ ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:34:21: warning: Value stored to 'd' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
34 | int64_t d = (idx / (width * height)) % depth;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:34:21: note: Value stored to 'd' during its initialization is never read
34 | int64_t d = (idx / (width * height)) % depth;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:68:5: warning: 2 adjacent parameters of 'my_kernel_remainder' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
68 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
69 | const float* __restrict__ sum_tensor,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:68:31: note: the first parameter in the range is 'input'
68 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:69:31: note: the last parameter in the range is 'sum_tensor'
69 | const float* __restrict__ sum_tensor,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:71:5: warning: 3 adjacent parameters of 'my_kernel_remainder' of similar type ('const int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
71 | const int64_t start,
| ^~~~~~~~~~~~~~~~~~~~
72 | const int64_t num_elements,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~
73 | const int64_t width,
| ~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:71:19: note: the first parameter in the range is 'start'
71 | const int64_t start,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:73:19: note: the last parameter in the range is 'width'
73 | const int64_t width,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:78:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:83:17: warning: Value stored to 'w' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
83 | int64_t w = global_idx % width;
| ^ ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:83:17: note: Value stored to 'w' during its initialization is never read
83 | int64_t w = global_idx % width;
| ^ ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:84:17: warning: Value stored to 'h' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
84 | int64_t h = (global_idx / width) % height;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:84:17: note: Value stored to 'h' during its initialization is never read
84 | int64_t h = (global_idx / width) % height;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:85:17: warning: Value stored to 'd' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
85 | int64_t d = (global_idx / (width * height)) % depth;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:85:17: note: Value stored to 'd' during its initialization is never read
85 | int64_t d = (global_idx / (width * height)) % depth;
| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:100:19: warning: Value stored to 'batch_size' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
100 | const int64_t batch_size = x.size(0);
| ^~~~~~~~~~ ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:100:19: note: Value stored to 'batch_size' during its initialization is never read
100 | const int64_t batch_size = x.size(0);
| ^~~~~~~~~~ ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:112:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | int blocks = (num_vectorized + threads - 1) / threads;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:128:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | int blocks_rem = (remainder + threads_rem - 1) / threads_rem;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:148:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
148 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_90/b5_s3_aligned_vectorized_ldg_90_conv3d/edit_1/edit_1.cu:149:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
149 | torch::Tensor conv_weight,
| ^
| const &