← Back to Leaderboard

The AI CUDA Engineer 👷

90_Conv3d_LeakyReLU_Sum_Clamp_GELUmodular_device_functions_v2_base

Level 2 • Task 90
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    sum_tensor: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution, LeakyReLU, tensor addition, clamping and GELU activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        conv_weight (torch.Tensor): 3D convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Bias tensor for 3D convolution of shape (out_channels)
        sum_tensor (torch.Tensor): Tensor to add of shape (out_channels, 1, 1, 1)

    Returns:
        torch.Tensor: Output tensor after applying convolution, LeakyReLU, addition,
            clamping and GELU activation
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias)
    x = F.leaky_relu(x, negative_slope=0.2)
    x = x + sum_tensor
    x = torch.clamp(x, min=-1.0, max=1.0)
    x = F.gelu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies LeakyReLU, sums with a tensor, clamps, and applies GELU activation.
    """

    def __init__(self, in_channels, out_channels, kernel_size, sum_tensor_shape):
        super(Model, self).__init__()
        conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = conv.bias
        self.sum_tensor = nn.Parameter(torch.randn(sum_tensor_shape) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias, self.sum_tensor)


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
sum_tensor_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, sum_tensor_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, applies LeakyReLU, sums with a tensor, clamps, and applies GELU activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, sum_tensor_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.sum_tensor = nn.Parameter(torch.randn(sum_tensor_shape)*0.02)

    def forward(self, x):
        x = self.conv(x)
        x = torch.nn.functional.leaky_relu(x, negative_slope=0.2)
        x = x + self.sum_tensor
        x = torch.clamp(x, min=-1.0, max=1.0)
        x = torch.nn.functional.gelu(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
sum_tensor_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, sum_tensor_shape]

Kernel Information

Related Kernels (Level 2, Task 90 • 90_Conv3d_LeakyReLU_Sum_Clamp_GELU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 aligned_vectorized_ldg_90_conv3d_edit_1 0.79 1.25 0.66
🥈 aligned_vectorized_ldg_90_conv3d_base 0.80 1.24 0.66
🥉 modular_device_functions_base 0.81 1.21 0.65
🥉 load_balanced_kernel_base_base 0.81 1.21 0.65
5 constant_memory_optimization_base 0.82 1.21 0.65
6 coalesced_mem_access_opt_base 0.82 1.20 0.64
7 atomic_minimal_usage_kernel_opt_base 0.83 1.20 0.64
7 atomic_minimal_usage_kernel_opt_edit_1 0.83 1.20 0.64
9 modular_device_functions_v2_base 0.83 1.20 0.64
10 balanced_workload_distribution_base 0.83 1.19 0.64
11 warp_primitives_based_kernel_edit_1 0.83 1.19 0.63
12 optimized_strided_loop_base_base 0.83 1.19 0.63
13 gridstride_const_base 0.84 1.18 0.63
13 block_size_256_kernel_base 0.84 1.18 0.63
15 warp_divergence_free_base 0.84 1.18 0.63
15 modular_device_functions_base 0.84 1.18 0.63
17 optimized_kernel_combination_base 0.84 1.18 0.63
18 multidim_indexed_kernel_base 0.84 1.18 0.63
18 const_mem_conv3d_leakyrelu_sumclamp_gelu_base 0.84 1.18 0.63
20 90_Conv3d_LeakyReLU_Sum_Clamp_GELU 0.84 1.17 0.63
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <math.h>

// Modular device functions for improved readability and maintainability
__device__ __forceinline__ float leaky_relu(float x) {
    // Apply LeakyReLU with negative slope 0.2
    return (x > 0.0f) ? x : 0.2f * x;
}

__device__ __forceinline__ float add_channel_bias(float x, int c, const float* sum_tensor) {
    // Add per-channel bias using __ldg for read-only cache
    return x + __ldg(&sum_tensor[c]);
}

__device__ __forceinline__ float clamp_val(float x) {
    // Clamp x between -1 and 1
    return fmaxf(fminf(x, 1.0f), -1.0f);
}

__device__ __forceinline__ float gelu_activation(float x) {
    // Apply GELU activation function
    float cube = x * x * x;
    float inner = 0.7978845608f * (x + 0.044715f * cube);
    return 0.5f * x * (1.0f + tanhf(inner));
}

// Composite function that applies the activation sequence
__device__ __forceinline__ float process_element(float x, int c, const float* sum_tensor) {
    x = leaky_relu(x);
    x = add_channel_bias(x, c, sum_tensor);
    x = clamp_val(x);
    return gelu_activation(x);
}

// Optimized kernel using modular device functions
__global__ void optimized_kernel(
    const float* __restrict__ input,
    const float* __restrict__ sum_tensor,
    float* __restrict__ output,
    int64_t num_elements,
    int64_t channels,
    int64_t depth,
    int64_t height,
    int64_t width) {

    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if(idx < num_elements) {
        // Compute channel index from linear index
        int c = (idx / (width * height * depth)) % channels;

        // Load input using read-only cache
        float x = __ldg(&input[idx]);
        
        // Process the element using modular functions
        output[idx] = process_element(x, c, sum_tensor);
    }
}

// Kernel launcher
void launch_optimized(torch::Tensor& input, torch::Tensor& sum_tensor) {
    int64_t num_elements = input.numel();
    const int threads = 256;
    const int blocks = (num_elements + threads - 1) / threads;

    optimized_kernel<<<blocks, threads>>>(
        input.data_ptr<float>(),
        sum_tensor.data_ptr<float>(),
        input.data_ptr<float>(),
        num_elements,
        input.size(1),   // channels
        input.size(2),   // depth
        input.size(3),   // height
        input.size(4));  // width

    cudaDeviceSynchronize();
}

// Forward function: performs 3D convolution and then applies the custom CUDA kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias,
    torch::Tensor sum_tensor) {

    // Validate that all tensors are on CUDA and are float32
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");
    TORCH_CHECK(sum_tensor.is_cuda(), "sum_tensor must be a CUDA tensor");
    TORCH_CHECK(x.scalar_type() == at::kFloat, "x must be in float32");

    // Perform 3D convolution using cuDNN
    auto x_conv = at::conv3d(x, conv_weight, conv_bias);
    auto output = x_conv.contiguous();

    // Apply the custom elementwise operations using our optimized kernel
    launch_optimized(output, sum_tensor);
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized forward function with modular device functions (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.240 inst/cycle 0.000 5
Executed Ipc Elapsed 3.182 inst/cycle 0.000 5
Issue Slots Busy 81.008 % 0.001 5
Issued Ipc Active 3.240 inst/cycle 0.000 5
SM Busy 81.008 % 0.001 5
Memory Throughput 1273008164909.886 byte/second 2132370206839011840.000 5
Mem Busy 21.534 % 0.000 5
Max Bandwidth 37.980 % 0.002 5
L1/TEX Hit Rate 55.418 % 0.000 5
L2 Hit Rate 50.436 % 0.017 5
Mem Pipes Busy 16.010 % 0.000 5
Warp Cycles Per Issued Instruction 16.370 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.374 cycle 0.000 5
Avg. Active Threads Per Warp 29.270 0.000 5
Avg. Not Predicated Off Threads Per Warp 26.980 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 10.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 83.660 % 0.000 5
Achieved Active Warps Per SM 53.542 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (51.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (83.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 628913.50 μs
Device Time 2484.75 μs
Self CPU Time 73.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 628839.51 μs
Device Time 2484.75 μs
Self CPU Time 154.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 625894.85 μs
Device Time 0.00 μs
Self CPU Time 158.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 626442.08 μs
Device Time 0.00 μs
Self CPU Time 626442.08 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv3d
CPU Time 346636.55 μs
Device Time 4226872.95 μs
Self CPU Time 10533.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 336103.35 μs
Device Time 4226872.95 μs
Self CPU Time 14391.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 321712.15 μs
Device Time 4226872.95 μs
Self CPU Time 28875.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 212070.01 μs
Device Time 3668601.89 μs
Self CPU Time 151043.50 μs
Self Device Time 3668601.89 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3668600.42 μs
Self CPU Time 0.00 μs
Self Device Time 3668600.42 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 5233932.86 μs
Device Time 77668.33 μs
Self CPU Time 5233932.86 μs
Self Device Time 77668.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45284 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:38:5 bugprone-easily-swappable-parameters
38 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39 | const float* __restrict__ sum_tensor,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:38:31: note: the first parameter in the range is 'input'
38 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:39:31: note: the last parameter in the range is 'sum_tensor'
39 | const float* __restrict__ sum_tensor,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:41:5: warning: 2 adjacent parameters of 'optimized_kernel' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
41 | int64_t num_elements,
| ^~~~~~~~~~~~~~~~~~~~~
42 | int64_t channels,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:41:13: note: the first parameter in the range is 'num_elements'
41 | int64_t num_elements,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:42:13: note: the last parameter in the range is 'channels'
42 | int64_t channels,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:47:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:50:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | int c = (idx / (width * height * depth)) % channels;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:64:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
64 | const int blocks = (num_elements + threads - 1) / threads;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:81:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
81 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_90/b5_s3_modular_device_functions_v2/base/base.cu:82:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
82 | torch::Tensor conv_weight,
| ^
| const &