← Back to Leaderboard

The AI CUDA Engineer 👷

99_Matmul_GELU_Softmaxwarp_optimized_fused_kernel_base_base

Level 2 • Task 99
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation, GELU activation, and softmax.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor after applying linear, GELU and softmax,
            with shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = F.gelu(x)
    x = F.softmax(x, dim=1)
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies GELU, and then applies Softmax.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = gemm.weight
        self.bias = gemm.bias

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias)


batch_size = 128
in_features = 100
out_features = 10


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies GELU, and then applies Softmax.
    """
    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)

    def forward(self, x):
        x = self.linear(x)
        x = torch.nn.functional.gelu(x)
        x = torch.nn.functional.softmax(x, dim=1)
        return x

batch_size = 128
in_features = 100
out_features = 10

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 99 • 99_Matmul_GELU_Softmax)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 fused_opt_base 0.01 2.78 2.26
🥇 warp_divergence_minimized_kernel_base 0.01 2.78 2.26
🥇 block_size_experiment_fused_kernel_base 0.01 2.78 2.26
🥇 optimized_fused_kernel_base 0.01 2.78 2.26
🥇 fused_shared_mem_kernel_base 0.01 2.78 2.26
🥇 balanced_workload_fused_kernel_base 0.01 2.78 2.26
7 reduced_sync_matmul_gelu_softmax_base 0.01 2.53 2.06
7 aligned_ldg_fused_kernel_base_base 0.01 2.53 2.06
7 warp_optimized_fused_kernel_base_base 0.01 2.53 2.06
7 fused_ldg_vec_kernel_base 0.01 2.53 2.06
7 unrolled_fused_matmul_gelu_softmax_base_base 0.01 2.53 2.06
7 fused_optim_base 0.01 2.53 2.06
7 fused_linear_gelu_softmax_optimized_base 0.01 2.53 2.06
7 warp_reduced_fused_kernel_base 0.01 2.53 2.06
7 fused_nodivergence_kernel_base 0.01 2.53 2.06
7 modular_device_functions_base 0.01 2.53 2.06
7 optimized_linear_gelu_softmax_base 0.01 2.53 2.06
7 optimized_linear_gelu_softmax_edit_1 0.01 2.53 2.06
7 optimized_linear_gelu_softmax_base 0.01 2.53 2.06
7 optimized_linear_gelu_softmax_edit_1 0.01 2.53 2.06
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <float.h>

// GELU activation function (approximation used in PyTorch)
__device__ float gelu(float x) {
    const float sqrt_2_over_pi = 0.7978845608028654f;
    const float coef = 0.044715f;
    float cdf = 0.5f * (1.0f + tanhf(sqrt_2_over_pi * x * (1.0f + coef * x * x)));
    return x * cdf;
}

// Warp-level reduction to compute maximum using __shfl_down_sync
__inline__ __device__ float warpReduceMax(float val) {
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        val = max(val, __shfl_down_sync(0xffffffff, val, offset));
    }
    return val;
}

// Warp-level reduction to compute sum using __shfl_down_sync
__inline__ __device__ float warpReduceSum(float val) {
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

// Fused kernel: Performs linear transformation, applies GELU activation, and softmax normalization
// Utilizes warp-level primitives to optimize reduction operations, minimizing shared memory usage
__global__ void warp_optimized_fused_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int batch_size,
    int in_features,
    int out_features
) {
    int row = blockIdx.x;   // Each block processes one row of the batch
    int tid = threadIdx.x;

    // 1. Compute the dot product for the linear transformation for each valid output feature
    float act = 0.0f;
    if (tid < out_features) {
        float sum = 0.0f;
        for (int k = 0; k < in_features; k++) {
            sum += x[row * in_features + k] * weight[tid * in_features + k];
        }
        sum += bias[tid];
        act = gelu(sum);
    }

    // 2. Compute maximum value using warp-level reduction
    float max_val = (tid < out_features) ? act : -FLT_MAX;
    max_val = warpReduceMax(max_val);

    // Use shared memory to store warp-level maxima
    __shared__ float smax[32];  // supports up to 32 warps per block (1024 threads/block)
    int lane = tid & (warpSize - 1);
    int warpId = tid / warpSize;
    if (lane == 0) {
        smax[warpId] = max_val;
    }
    __syncthreads();

    // First warp reduces the warp maxima
    if (tid < warpSize) {
        // Only threads corresponding to the number of warps participate
        int numWarps = (blockDim.x + warpSize - 1) / warpSize;
        float tmp = (tid < numWarps) ? smax[tid] : -FLT_MAX;
        tmp = warpReduceMax(tmp);
        smax[tid] = tmp;
    }
    __syncthreads();

    float row_max = smax[0];

    // 3. Compute the exponentials and sum using warp-level reduction
    float exp_val = (tid < out_features) ? expf(act - row_max) : 0.0f;
    float sum_val = warpReduceSum(exp_val);
    __shared__ float ssum[32];
    if (lane == 0) {
        ssum[warpId] = sum_val;
    }
    __syncthreads();

    if (tid < warpSize) {
        int numWarps = (blockDim.x + warpSize - 1) / warpSize;
        float tmp = (tid < numWarps) ? ssum[tid] : 0.0f;
        tmp = warpReduceSum(tmp);
        ssum[tid] = tmp;
    }
    __syncthreads();

    float sum_exp = ssum[0];

    // 4. Write the normalized softmax result for valid output features
    if (tid < out_features) {
        output[row * out_features + tid] = exp_val / sum_exp;
    }
}

// Forward function that wraps the kernel launch
// Sets up the padded thread count and allocates shared memory for warp-level reductions
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias
) {
    const int batch_size = x.size(0);
    const int in_features = x.size(1);
    const int out_features = weight.size(0);

    auto options = torch::TensorOptions().dtype(x.dtype()).device(x.device());
    auto output = torch::empty({batch_size, out_features}, options);

    // Determine padded thread count: round up out_features to the next multiple of 32
    int threads = ((out_features + 31) / 32) * 32;
    dim3 blocks(batch_size);
    dim3 threadBlock(threads);

    // Shared memory size: space for warp-level maxima and sums
    int shared_mem_size = 2 * 32 * sizeof(float);

    warp_optimized_fused_kernel<<<blocks, threadBlock, shared_mem_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused Linear + GELU + Softmax forward with warp-level optimizations");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.060 inst/cycle 0.000 5
Executed Ipc Elapsed 0.050 inst/cycle 0.000 5
Issue Slots Busy 1.568 % 0.000 5
Issued Ipc Active 0.060 inst/cycle 0.000 5
SM Busy 1.568 % 0.000 5
Memory Throughput 6694981612.050 byte/second 8837190495254405.000 5
Mem Busy 3.948 % 0.010 5
Max Bandwidth 3.126 % 0.003 5
L1/TEX Hit Rate 87.140 % 0.000 5
L2 Hit Rate 99.330 % 0.943 5
Mem Pipes Busy 1.492 % 0.000 5
Warp Cycles Per Issued Instruction 15.822 cycle 0.038 5
Warp Cycles Per Executed Instruction 15.908 cycle 0.039 5
Avg. Active Threads Per Warp 17.850 0.000 5
Avg. Not Predicated Off Threads Per Warp 16.230 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 64.000 block 0.000 5
Block Limit Shared Mem 42.000 block 0.000 5
Block Limit Warps 64.000 block 0.000 5
Theoretical Active Warps per SM 32.000 warp 0.000 5
Theoretical Occupancy 50.000 % 0.000 5
Achieved Occupancy 1.560 % 0.000 5
Achieved Active Warps Per SM 1.000 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 17.8 threads being active per cycle. This is further reduced to 16.2 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. The difference between calculated theoretical (50.0%) and measured achieved occupancy (1.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 312433.68 μs
Device Time 9.09 μs
Self CPU Time 41.88 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 312391.79 μs
Device Time 9.09 μs
Self CPU Time 91.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 312162.53 μs
Device Time 0.00 μs
Self CPU Time 89.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 311896.43 μs
Device Time 0.00 μs
Self CPU Time 311896.43 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 512931.79 μs
Device Time 21566.74 μs
Self CPU Time 512931.79 μs
Self Device Time 21566.74 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
warp_optimized_fused_kernel(float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 71710.07 μs
Self CPU Time 0.00 μs
Self Device Time 71710.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 37978.57 μs
Device Time 42920.04 μs
Self CPU Time 37978.57 μs
Self Device Time 42920.04 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 69148.22 μs
Device Time 640754.20 μs
Self CPU Time 14406.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 54743.76 μs
Device Time 640754.20 μs
Self CPU Time 17596.85 μs
Self Device Time 640754.20 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 640754.20 μs
Self CPU Time 0.00 μs
Self Device Time 640754.20 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45289 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:35:5 bugprone-easily-swappable-parameters
35 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
36 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:35:31: note: the first parameter in the range is 'weight'
35 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:36:31: note: the last parameter in the range is 'bias'
36 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:38:5: warning: 3 adjacent parameters of 'warp_optimized_fused_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
38 | int batch_size,
| ^~~~~~~~~~~~~~~
39 | int in_features,
| ~~~~~~~~~~~~~~~~
40 | int out_features
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:38:9: note: the first parameter in the range is 'batch_size'
38 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:40:9: note: the last parameter in the range is 'out_features'
40 | int out_features
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:42:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | int row = blockIdx.x; // Each block processes one row of the batch
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:43:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:72:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int numWarps = (blockDim.x + warpSize - 1) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:91:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
91 | int numWarps = (blockDim.x + warpSize - 1) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:109:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
109 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:110:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
110 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:111:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
111 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:113:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | const int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:114:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
114 | const int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:115:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
115 | const int out_features = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:126:27: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
126 | int shared_mem_size = 2 * 32 * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:126:27: note: make conversion explicit to silence this warning
6 | int shared_mem_size = 2 * 32 * sizeof(float);
| ^~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_99/b7_s1_warp_optimized_fused_kernel_base/base/base.cu:126:27: note: perform multiplication in a wider type
126 | int shared_mem_size = 2 * 32 * sizeof(float);
| ^
| static_cast<long>( )