← Back to Leaderboard

The AI CUDA Engineer 👷

47_NetVladNoGhostClusterstiled_unroll_min_sync_optimized_base

Level 3 • Task 47
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


def module_fn(
    x: torch.Tensor,
    clusters: torch.Tensor,
    clusters2: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    feature_size: int,
    cluster_size: int,
    is_training: bool,
) -> torch.Tensor:
    """
    Functional version of the NetVLAD without ghost clusters

    Args:
        x: Input tensor of shape (batch_size, num_features, feature_size)
        clusters: Weight tensor for cluster assignments
        clusters2: Weight tensor for visual words
        bn_weight: BatchNorm weight
        bn_bias: BatchNorm bias
        bn_running_mean: BatchNorm running mean
        bn_running_var: BatchNorm running var
        feature_size: Size of each feature
        cluster_size: Number of clusters (excluding ghost clusters)
        is_training: Whether in training mode

    Returns:
        Output tensor of shape (batch_size, cluster_size * feature_size)
    """
    max_sample = x.size()[1]
    x = x.view(-1, feature_size)  # B x N x D -> BN x D

    if x.device != clusters.device:
        msg = f"x.device {x.device} != cluster.device {clusters.device}"
        raise ValueError(msg)

    assignment = th.matmul(x, clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
    assignment = F.batch_norm(
        assignment,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=is_training,
    )

    assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
    # remove ghost assigments
    assignment = assignment[:, :cluster_size]
    assignment = assignment.view(-1, max_sample, cluster_size)  # -> B x N x K
    a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
    a = a_sum * clusters2

    assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

    x = x.view(-1, max_sample, feature_size)  # BN x D -> B x N x D
    vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
    vlad = vlad.transpose(1, 2)  # -> B x D x K
    vlad = vlad - a

    # L2 intra norm
    vlad = F.normalize(vlad)

    # flattening + L2 norm
    vlad = vlad.reshape(-1, cluster_size * feature_size)  # -> B x DK
    vlad = F.normalize(vlad)
    return vlad  # B x DK


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = 1 / math.sqrt(feature_size)
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))

        # Extract batchnorm parameters
        bn = nn.BatchNorm1d(clusters)
        self.bn_weight = nn.Parameter(bn.weight.data.clone())
        self.bn_bias = nn.Parameter(bn.bias.data.clone())
        self.bn_running_mean = nn.Parameter(bn.running_mean.data.clone())
        self.bn_running_var = nn.Parameter(bn.running_var.data.clone())

        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.clusters,
            self.clusters2,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.feature_size,
            self.cluster_size,
            self.training,
        )


batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 0


def get_inputs():
    return [torch.randn(batch_size, num_features, feature_size)]


def get_init_inputs():
    return [num_clusters, feature_size, ghost_clusters]
# Copyright 2018 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Code modified from here
https://github.com/albanie/collaborative-experts/blob/master/model/net_vlad.py
"""


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = (1 / math.sqrt(feature_size))
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))
        self.batch_norm = nn.BatchNorm1d(clusters)
        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, mask=None):
        """Aggregates feature maps into a fixed size representation.  In the following
        notation, B = batch_size, N = num_features, K = num_clusters, D = feature_size.

        Args:
            x (th.Tensor): B x N x D

        Returns:
            (th.Tensor): B x DK
        """
        max_sample = x.size()[1]
        x = x.view(-1, self.feature_size)  # B x N x D -> BN x D

        if x.device != self.clusters.device:
            msg = f"x.device {x.device} != cluster.device {self.clusters.device}"
            raise ValueError(msg)

        assignment = th.matmul(x, self.clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
        assignment = self.batch_norm(assignment)

        assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
        # remove ghost assigments
        assignment = assignment[:, :self.cluster_size]
        assignment = assignment.view(-1, max_sample, self.cluster_size)  # -> B x N x K
        a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
        a = a_sum * self.clusters2

        assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

        x = x.view(-1, max_sample, self.feature_size)  # BN x D -> B x N x D
        vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
        vlad = vlad.transpose(1, 2)  # -> B x D x K
        vlad = vlad - a

        # L2 intra norm
        vlad = F.normalize(vlad)

        # flattening + L2 norm
        vlad = vlad.reshape(-1, self.cluster_size * self.feature_size)  # -> B x DK
        vlad = F.normalize(vlad)
        return vlad  # B x DK

batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 0

def get_inputs():
  return [torch.randn(batch_size, num_features, feature_size)]

def get_init_inputs():
  return [num_clusters, feature_size, ghost_clusters]

Kernel Information

Related Kernels (Level 3, Task 47 • 47_NetVladNoGhostClusters)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 netvlad_fused_streams_edit_1 0.07 1.79 1.14
🥈 netvlad_fused_assign_edit_1 0.07 1.77 1.12
🥈 netvlad_fused_assign_warp_reduce_edit_1 0.07 1.77 1.12
4 netvlad_fused_assign_base 0.07 1.71 1.09
5 netvlad_stream_overlap_edit_1 0.07 1.69 1.07
6 netvlad_fused_modular_base 0.09 1.39 0.88
7 netvlad_fused_modular_edit_1 0.09 1.31 0.83
8 netvlad_stride_fused_edit_1 0.10 1.23 0.78
9 47_NetVladNoGhostClusters 0.10 1.17 0.74
9 netvlad_stride_fused_base 0.10 1.17 0.74
11 tiled_index_opt_base 0.11 1.11 0.70
11 tiled_unroll_block_optimization_base 0.11 1.11 0.70
13 tiled_matmul_unified_base 0.11 1.10 0.69
13 hybrid_netvlad_matmul_base 0.11 1.10 0.69
13 47_netvlad_noghostclusters_unroll_base_base 0.11 1.10 0.69
16 47_netvlad_noghostclusters_shared_base 0.11 1.09 0.69
16 tiled_reduced_sync_base_base 0.11 1.09 0.69
16 tiled_unroll_min_sync_base 0.11 1.09 0.69
16 tiled_unroll_min_sync_optimized_base 0.11 1.09 0.69
20 optimized_tiled_assignment_base 0.11 1.08 0.68
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <vector>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

// Optimized block size for shared memory tiling
#define TILE_DIM 32

// Tiled matrix multiplication kernel using shared memory with loop unrolling and minimal synchronizations
// Computes: C = A (MxD) * B (DxN), where A is x (reshaped) and B is clusters
__global__ void tiledMatMulMinSync(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C,
                              int M, int D, int N) {
  // Each thread computes one element in the output matrix C
  // using tiling to reduce global memory accesses
  int row = blockIdx.y * TILE_DIM + threadIdx.y;
  int col = blockIdx.x * TILE_DIM + threadIdx.x;

  __shared__ float tile_A[TILE_DIM][TILE_DIM];
  __shared__ float tile_B[TILE_DIM][TILE_DIM];

  float sum = 0.0f;

  // Loop over tiles in the inner dimension
  for (int t = 0; t < (D + TILE_DIM - 1) / TILE_DIM; t++) {
    // Load element of A into shared memory if within bounds
    int a_col = t * TILE_DIM + threadIdx.x;
    if (row < M && a_col < D) {
      tile_A[threadIdx.y][threadIdx.x] = A[row * D + a_col];
    } else {
      tile_A[threadIdx.y][threadIdx.x] = 0.0f;
    }

    // Load element of B into shared memory if within bounds
    int b_row = t * TILE_DIM + threadIdx.y;
    if (b_row < D && col < N) {
      tile_B[threadIdx.y][threadIdx.x] = B[b_row * N + col];
    } else {
      tile_B[threadIdx.y][threadIdx.x] = 0.0f;
    }

    __syncthreads();

    // Multiply the two tiles together with loop unrolling
    #pragma unroll
    for (int i = 0; i < TILE_DIM; i++) {
      sum += tile_A[threadIdx.y][i] * tile_B[i][threadIdx.x];
    }

    // Synchronize only if there are more tiles to process
    if (t < (D + TILE_DIM - 1) / TILE_DIM - 1) {
      __syncthreads();
    }
  }

  // Write the result to global memory if within bounds
  if (row < M && col < N) {
    C[row * N + col] = sum;
  }
}

// Forward function for NetVLAD (no ghost clusters) using the shared memory optimized kernel
torch::Tensor forward(
    torch::Tensor x,                // B x N x D
    torch::Tensor clusters,         // D x (K+G)
    torch::Tensor clusters2,        // 1 x D x K
    torch::Tensor bn_weight,        // (K+G)
    torch::Tensor bn_bias,          // (K+G)
    torch::Tensor bn_running_mean,  // (K+G)
    torch::Tensor bn_running_var,   // (K+G)
    int64_t feature_size,           // D
    int64_t cluster_size,           // K
    bool is_training
) {
    CHECK_INPUT(x);
    CHECK_INPUT(clusters);
    CHECK_INPUT(clusters2);
    CHECK_INPUT(bn_weight);
    CHECK_INPUT(bn_bias);
    CHECK_INPUT(bn_running_mean);
    CHECK_INPUT(bn_running_var);

    int64_t B = x.size(0);
    int64_t N_points = x.size(1); // Number of descriptors/features per sample
    int64_t D = feature_size;
    int64_t K = cluster_size;
    int64_t KplusG = clusters.size(1); // Total clusters including ghost clusters

    // Reshape x: B x N x D -> (B*N) x D
    auto x_reshaped = x.reshape({B * N_points, D});

    // Ensure device consistency
    if (x_reshaped.device() != clusters.device()) {
        TORCH_CHECK(false, "x.device() != clusters.device()");
    }

    // Allocate memory for assignment: (B*N) x (K+G)
    auto assignment = torch::empty({B * N_points, KplusG}, x.options());

    // Launch tiled matrix multiplication kernel
    // x_reshaped: (B*N) x D, clusters: D x (K+G), output: (B*N) x (K+G)
    int M = B * N_points;     // Number of rows
    int inner = D;            // Shared inner dimension
    int N_dim = KplusG;       // Number of columns
    
    dim3 block(TILE_DIM, TILE_DIM);
    dim3 grid((N_dim + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);

    tiledMatMulMinSync<<<grid, block>>>(x_reshaped.data_ptr<float>(), clusters.data_ptr<float>(), assignment.data_ptr<float>(), M, inner, N_dim);

    // Apply BatchNorm
    assignment = torch::batch_norm(
        assignment,
        bn_weight,
        bn_bias,
        bn_running_mean,
        bn_running_var,
        is_training,
        0.1,
        1e-5,
        true
    );

    // Apply Softmax along dim=1
    assignment = torch::softmax(assignment, 1); // (B*N) x (K+G)

    // Remove ghost assignments: keep first K columns
    assignment = assignment.narrow(1, 0, K); // (B*N) x K

    // Reshape assignment: (B*N) x K -> B x N x K
    assignment = assignment.reshape({B, N_points, K});

    // Compute a_sum = assignment.sum(dim=1, keepdim=true) // B x 1 x K
    auto a_sum = assignment.sum(1, /*keepdim=*/true);

    // Expand clusters2 to match batch size: clusters2 is originally 1 x D x K
    auto clusters2_exp = clusters2.expand({B, D, K}); // B x D x K

    // Compute a = a_sum * clusters2
    auto a = clusters2_exp * a_sum; // B x D x K

    // Transpose assignment: B x N x K -> B x K x N
    assignment = assignment.transpose(1, 2);

    // Reshape x back to B x N x D
    auto x_orig = x.reshape({B, N_points, D});

    // Compute vlad = assignment @ x_orig; assignment: B x K x N, x_orig: B x N x D
    auto vlad = torch::bmm(assignment, x_orig); // B x K x D

    // Transpose vlad to B x D x K
    vlad = vlad.transpose(1, 2);

    // Compute vlad = vlad - a
    vlad = vlad - a;

    // L2 intra-normalization along feature dimension D
    vlad = torch::nn::functional::normalize(
        vlad, torch::nn::functional::NormalizeFuncOptions().p(2).dim(1));

    // Flatten vlad: B x D x K -> B x (D*K)
    vlad = vlad.reshape({B, D * K});

    // L2 normalization along the flattened dimension
    vlad = torch::nn::functional::normalize(
        vlad, torch::nn::functional::NormalizeFuncOptions().p(2).dim(1));

    return vlad;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "NetVLAD forward with minimal synchronizations");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.207 inst/cycle 0.000 3
Executed Ipc Elapsed 0.827 inst/cycle 0.000 3
Issue Slots Busy 30.233 % 0.016 3
Issued Ipc Active 1.210 inst/cycle 0.000 3
SM Busy 30.233 % 0.016 3
Memory Throughput 228312223074.737 byte/second 2777264272097645056.000 3
Mem Busy 44.227 % 0.103 3
Max Bandwidth 42.377 % 0.094 3
L1/TEX Hit Rate 0.000 % 0.000 3
L2 Hit Rate 33.600 % 0.826 3
Mem Pipes Busy 37.360 % 0.075 3
Warp Cycles Per Issued Instruction 26.330 cycle 0.001 3
Warp Cycles Per Executed Instruction 26.393 cycle 0.001 3
Avg. Active Threads Per Warp 32.000 0.000 3
Avg. Not Predicated Off Threads Per Warp 31.920 0.000 3
Max Active Clusters 0.000 cluster 0.000 3
Max Cluster Size 8.000 block 0.000 3
Overall GPU Occupancy 0.000 % 0.000 3
Cluster Occupancy 0.000 % 0.000 3
Block Limit SM 32.000 block 0.000 3
Block Limit Registers 2.000 block 0.000 3
Block Limit Shared Mem 3.000 block 0.000 3
Block Limit Warps 2.000 block 0.000 3
Theoretical Active Warps per SM 64.000 warp 0.000 3
Theoretical Occupancy 100.000 % 0.000 3
Achieved Occupancy 49.893 % 0.000 3
Achieved Active Warps Per SM 31.930 warp 0.000 3
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (49.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zero_
CPU Time 507140.01 μs
Device Time 2530885.82 μs
Self CPU Time 119208.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 387946.96 μs
Device Time 2530885.82 μs
Self CPU Time 148637.26 μs
Self Device Time 2530885.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 2138662.00 μs
Device Time 24949.98 μs
Self CPU Time 2138662.00 μs
Self Device Time 24949.98 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
tiledMatMulMinSync(float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 815580.72 μs
Self CPU Time 0.00 μs
Self Device Time 815580.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 1712374.08 μs
Device Time 552705.27 μs
Self CPU Time 54980.16 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 1657393.92 μs
Device Time 552705.27 μs
Self CPU Time 79127.50 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::native_batch_norm
CPU Time 1500870.42 μs
Device Time 552705.27 μs
Self CPU Time 438451.20 μs
Self Device Time 479156.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 2530885.82 μs
Self CPU Time 0.00 μs
Self Device Time 2530885.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::norm
CPU Time 808380.92 μs
Device Time 342722.22 μs
Self CPU Time 245716.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:5:35 bugprone-macro-parentheses
5 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:6:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
6 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:14:36: warning: 2 adjacent parameters of 'tiledMatMulMinSync' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | __global__ void tiledMatMulMinSync(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:14:62: note: the first parameter in the range is 'A'
14 | __global__ void tiledMatMulMinSync(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:14:91: note: the last parameter in the range is 'B'
14 | __global__ void tiledMatMulMinSync(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:18:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int row = blockIdx.y * TILE_DIM + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:19:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int col = blockIdx.x * TILE_DIM + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:29:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int a_col = t * TILE_DIM + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:37:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int b_row = t * TILE_DIM + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:66:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
66 | torch::Tensor x, // B x N x D
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:67:19: warning: the parameter 'clusters' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
67 | torch::Tensor clusters, // D x (K+G)
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:68:19: warning: the parameter 'clusters2' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
68 | torch::Tensor clusters2, // 1 x D x K
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:73:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
73 | int64_t feature_size, // D
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
74 | int64_t cluster_size, // K
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:73:13: note: the first parameter in the range is 'feature_size'
73 | int64_t feature_size, // D
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:74:13: note: the last parameter in the range is 'cluster_size'
74 | int64_t cluster_size, // K
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:104:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
104 | int M = B * N_points; // Number of rows
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:105:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | int inner = D; // Shared inner dimension
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_47/b7_s1_tiled_unroll_min_sync_optimized/base/base.cu:106:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
106 | int N_dim = KplusG; // Number of columns
| ^