← Back to Leaderboard

The AI CUDA Engineer 👷

47_NetVladNoGhostClustersnetvlad_fused_streams_edit_1

Level 3 • Task 47
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


def module_fn(
    x: torch.Tensor,
    clusters: torch.Tensor,
    clusters2: torch.Tensor,
    bn_weight: torch.Tensor,
    bn_bias: torch.Tensor,
    bn_running_mean: torch.Tensor,
    bn_running_var: torch.Tensor,
    feature_size: int,
    cluster_size: int,
    is_training: bool,
) -> torch.Tensor:
    """
    Functional version of the NetVLAD without ghost clusters

    Args:
        x: Input tensor of shape (batch_size, num_features, feature_size)
        clusters: Weight tensor for cluster assignments
        clusters2: Weight tensor for visual words
        bn_weight: BatchNorm weight
        bn_bias: BatchNorm bias
        bn_running_mean: BatchNorm running mean
        bn_running_var: BatchNorm running var
        feature_size: Size of each feature
        cluster_size: Number of clusters (excluding ghost clusters)
        is_training: Whether in training mode

    Returns:
        Output tensor of shape (batch_size, cluster_size * feature_size)
    """
    max_sample = x.size()[1]
    x = x.view(-1, feature_size)  # B x N x D -> BN x D

    if x.device != clusters.device:
        msg = f"x.device {x.device} != cluster.device {clusters.device}"
        raise ValueError(msg)

    assignment = th.matmul(x, clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
    assignment = F.batch_norm(
        assignment,
        bn_running_mean,
        bn_running_var,
        bn_weight,
        bn_bias,
        training=is_training,
    )

    assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
    # remove ghost assigments
    assignment = assignment[:, :cluster_size]
    assignment = assignment.view(-1, max_sample, cluster_size)  # -> B x N x K
    a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
    a = a_sum * clusters2

    assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

    x = x.view(-1, max_sample, feature_size)  # BN x D -> B x N x D
    vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
    vlad = vlad.transpose(1, 2)  # -> B x D x K
    vlad = vlad - a

    # L2 intra norm
    vlad = F.normalize(vlad)

    # flattening + L2 norm
    vlad = vlad.reshape(-1, cluster_size * feature_size)  # -> B x DK
    vlad = F.normalize(vlad)
    return vlad  # B x DK


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = 1 / math.sqrt(feature_size)
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))

        # Extract batchnorm parameters
        bn = nn.BatchNorm1d(clusters)
        self.bn_weight = nn.Parameter(bn.weight.data.clone())
        self.bn_bias = nn.Parameter(bn.bias.data.clone())
        self.bn_running_mean = nn.Parameter(bn.running_mean.data.clone())
        self.bn_running_var = nn.Parameter(bn.running_var.data.clone())

        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.clusters,
            self.clusters2,
            self.bn_weight,
            self.bn_bias,
            self.bn_running_mean,
            self.bn_running_var,
            self.feature_size,
            self.cluster_size,
            self.training,
        )


batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 0


def get_inputs():
    return [torch.randn(batch_size, num_features, feature_size)]


def get_init_inputs():
    return [num_clusters, feature_size, ghost_clusters]
# Copyright 2018 Antoine Miech All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Code modified from here
https://github.com/albanie/collaborative-experts/blob/master/model/net_vlad.py
"""


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as th


class Model(nn.Module):
    def __init__(self, cluster_size, feature_size, ghost_clusters):
        super(Model, self).__init__()

        self.feature_size = feature_size
        self.cluster_size = cluster_size
        self.ghost_clusters = ghost_clusters

        init_sc = (1 / math.sqrt(feature_size))
        clusters = cluster_size + ghost_clusters

        # The `clusters` weights are the `(w,b)` in the paper
        self.clusters = nn.Parameter(init_sc * th.randn(feature_size, clusters))
        self.batch_norm = nn.BatchNorm1d(clusters)
        # The `clusters2` weights are the visual words `c_k` in the paper
        self.clusters2 = nn.Parameter(init_sc * th.randn(1, feature_size, cluster_size))
        self.out_dim = self.cluster_size * feature_size

    def forward(self, x, mask=None):
        """Aggregates feature maps into a fixed size representation.  In the following
        notation, B = batch_size, N = num_features, K = num_clusters, D = feature_size.

        Args:
            x (th.Tensor): B x N x D

        Returns:
            (th.Tensor): B x DK
        """
        max_sample = x.size()[1]
        x = x.view(-1, self.feature_size)  # B x N x D -> BN x D

        if x.device != self.clusters.device:
            msg = f"x.device {x.device} != cluster.device {self.clusters.device}"
            raise ValueError(msg)

        assignment = th.matmul(x, self.clusters)  # (BN x D) x (D x (K+G)) -> BN x (K+G)
        assignment = self.batch_norm(assignment)

        assignment = F.softmax(assignment, dim=1)  # BN x (K+G) -> BN x (K+G)
        # remove ghost assigments
        assignment = assignment[:, :self.cluster_size]
        assignment = assignment.view(-1, max_sample, self.cluster_size)  # -> B x N x K
        a_sum = th.sum(assignment, dim=1, keepdim=True)  # B x N x K -> B x 1 x K
        a = a_sum * self.clusters2

        assignment = assignment.transpose(1, 2)  # B x N x K -> B x K x N

        x = x.view(-1, max_sample, self.feature_size)  # BN x D -> B x N x D
        vlad = th.matmul(assignment, x)  # (B x K x N) x (B x N x D) -> B x K x D
        vlad = vlad.transpose(1, 2)  # -> B x D x K
        vlad = vlad - a

        # L2 intra norm
        vlad = F.normalize(vlad)

        # flattening + L2 norm
        vlad = vlad.reshape(-1, self.cluster_size * self.feature_size)  # -> B x DK
        vlad = F.normalize(vlad)
        return vlad  # B x DK

batch_size = 32
num_features = 100
num_clusters = 32
feature_size = 512
ghost_clusters = 0

def get_inputs():
  return [torch.randn(batch_size, num_features, feature_size)]

def get_init_inputs():
  return [num_clusters, feature_size, ghost_clusters]

Kernel Information

Related Kernels (Level 3, Task 47 • 47_NetVladNoGhostClusters)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 netvlad_fused_streams_edit_1 0.07 1.79 1.14
🥈 netvlad_fused_assign_edit_1 0.07 1.77 1.12
🥈 netvlad_fused_assign_warp_reduce_edit_1 0.07 1.77 1.12
4 netvlad_fused_assign_base 0.07 1.71 1.09
5 netvlad_stream_overlap_edit_1 0.07 1.69 1.07
6 netvlad_fused_modular_base 0.09 1.39 0.88
7 netvlad_fused_modular_edit_1 0.09 1.31 0.83
8 netvlad_stride_fused_edit_1 0.10 1.23 0.78
9 47_NetVladNoGhostClusters 0.10 1.17 0.74
9 netvlad_stride_fused_base 0.10 1.17 0.74
11 tiled_index_opt_base 0.11 1.11 0.70
11 tiled_unroll_block_optimization_base 0.11 1.11 0.70
13 tiled_matmul_unified_base 0.11 1.10 0.69
13 hybrid_netvlad_matmul_base 0.11 1.10 0.69
13 47_netvlad_noghostclusters_unroll_base_base 0.11 1.10 0.69
16 47_netvlad_noghostclusters_shared_base 0.11 1.09 0.69
16 tiled_reduced_sync_base_base 0.11 1.09 0.69
16 tiled_unroll_min_sync_base 0.11 1.09 0.69
16 tiled_unroll_min_sync_optimized_base 0.11 1.09 0.69
20 optimized_tiled_assignment_base 0.11 1.08 0.68
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

constexpr int TILE_SIZE = 128;
constexpr int NUM_STREAMS = 2;
constexpr int CHUNK_SIZE = 1024;

__global__ void fused_assignment_kernel(
    const float* __restrict__ x,
    const float* __restrict__ clusters,
    const float* bn_weight,
    const float* bn_bias,
    const float* bn_mean,
    const float* bn_var,
    float* output,
    int64_t start_idx,
    int64_t chunk_size,
    int64_t D,
    int64_t KplusG,
    bool is_training) {
    
    int row = blockIdx.x * blockDim.y + threadIdx.y + start_idx;
    int tid = threadIdx.x;
    int col = threadIdx.y;
    
    if (row >= start_idx + chunk_size) return;
    
    __shared__ float smem[TILE_SIZE];
    __shared__ float smem_max[TILE_SIZE];
    __shared__ float smem_sum[TILE_SIZE];
    
    // Compute matmul row
    float sum = 0.0f;
    #pragma unroll 4
    for (int i = tid; i < D; i += TILE_SIZE) {
        sum += x[row * D + i] * clusters[i * KplusG + col];
    }
    atomicAdd(&smem[col], sum);
    
    __syncthreads();
    
    // Apply BN
    float val = smem[col];
    if (!is_training) {
        val = (val - bn_mean[col]) * bn_weight[col] / sqrtf(bn_var[col] + 1e-5f) + bn_bias[col];
    }
    
    // Softmax reduction with improved memory access pattern
    float max_val = -INFINITY;
    #pragma unroll 4
    for (int i = tid; i < KplusG; i += TILE_SIZE) {
        max_val = fmaxf(max_val, smem[i]);
    }
    smem_max[tid] = max_val;
    
    __syncthreads();
    
    for (int s = blockDim.x/2; s > 0; s >>= 1) {
        if (tid < s) {
            smem_max[tid] = fmaxf(smem_max[tid], smem_max[tid + s]);
        }
        __syncthreads();
    }
    
    max_val = smem_max[0];
    
    float sum_exp = 0.0f;
    val = __expf(val - max_val);
    #pragma unroll 4
    for (int i = tid; i < KplusG; i += TILE_SIZE) {
        sum_exp += __expf(smem[i] - max_val);
    }
    smem_sum[tid] = sum_exp;
    
    __syncthreads();
    
    for (int s = blockDim.x/2; s > 0; s >>= 1) {
        if (tid < s) {
            smem_sum[tid] += smem_sum[tid + s];
        }
        __syncthreads();
    }
    
    output[row * KplusG + col] = val / smem_sum[0];
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor clusters,
    torch::Tensor clusters2,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_running_mean,
    torch::Tensor bn_running_var,
    int64_t feature_size,
    int64_t cluster_size,
    bool is_training) {
    
    CHECK_INPUT(x);
    CHECK_INPUT(clusters);
    CHECK_INPUT(clusters2);
    CHECK_INPUT(bn_weight);
    CHECK_INPUT(bn_bias);
    CHECK_INPUT(bn_running_mean);
    CHECK_INPUT(bn_running_var);

    int64_t B = x.size(0);
    int64_t N = x.size(1);
    int64_t D = feature_size;
    int64_t K = cluster_size;
    int64_t KplusG = clusters.size(1);
    int64_t BxN = B * N;

    // Create CUDA streams
    std::vector<cudaStream_t> streams(NUM_STREAMS);
    for (int i = 0; i < NUM_STREAMS; i++) {
        cudaStreamCreate(&streams[i]);
    }

    x = x.reshape({-1, D});
    auto assignment = torch::empty({BxN, KplusG}, x.options());

    dim3 block(TILE_SIZE, TILE_SIZE);
    size_t shared_mem = TILE_SIZE * sizeof(float) * 3; // For smem, smem_max, and smem_sum

    // Process data in chunks using multiple streams
    for (int64_t chunk_start = 0; chunk_start < BxN; chunk_start += CHUNK_SIZE) {
        int64_t current_chunk_size = std::min(static_cast<int64_t>(CHUNK_SIZE), BxN - chunk_start);
        int stream_idx = (chunk_start / CHUNK_SIZE) % NUM_STREAMS;
        
        dim3 grid((current_chunk_size + TILE_SIZE - 1) / TILE_SIZE);
        
        fused_assignment_kernel<<<grid, block, shared_mem, streams[stream_idx]>>>(
            x.data_ptr<float>(),
            clusters.data_ptr<float>(),
            bn_weight.data_ptr<float>(),
            bn_bias.data_ptr<float>(),
            bn_running_mean.data_ptr<float>(),
            bn_running_var.data_ptr<float>(),
            assignment.data_ptr<float>(),
            chunk_start,
            current_chunk_size,
            D,
            KplusG,
            is_training);
    }

    // Synchronize all streams before proceeding
    for (auto& stream : streams) {
        cudaStreamSynchronize(stream);
        cudaStreamDestroy(stream);
    }

    assignment = assignment.narrow(1, 0, K).reshape({B, N, K});
    auto a_sum = assignment.sum(1, true);
    clusters2 = clusters2.expand({B, D, K});
    auto a = clusters2 * a_sum;

    assignment = assignment.transpose(1, 2);
    x = x.reshape({B, N, D});
    auto vlad = torch::bmm(assignment, x).transpose(1, 2) - a;

    vlad = torch::nn::functional::normalize(
        vlad, torch::nn::functional::NormalizeFuncOptions().p(2).dim(1));
    vlad = vlad.reshape({B, D * K});
    vlad = torch::nn::functional::normalize(
        vlad, torch::nn::functional::NormalizeFuncOptions().p(2).dim(1));

    return vlad;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "NetVLAD forward with streams");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::zero_
CPU Time 131906.64 μs
Device Time 1189032.02 μs
Self CPU Time 27283.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 104643.26 μs
Device Time 1189032.02 μs
Self CPU Time 35238.75 μs
Self Device Time 1189032.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::reshape
CPU Time 326730.76 μs
Device Time 85904.18 μs
Self CPU Time 70569.39 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 794180.83 μs
Device Time 58372.03 μs
Self CPU Time 794180.83 μs
Self Device Time 58372.03 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::bmm
CPU Time 390426.45 μs
Device Time 150695.79 μs
Self CPU Time 265292.41 μs
Self Device Time 150695.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::norm
CPU Time 411580.20 μs
Device Time 170886.15 μs
Self CPU Time 124595.53 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linalg_vector_norm
CPU Time 286984.67 μs
Device Time 170886.15 μs
Self CPU Time 133774.01 μs
Self Device Time 170886.15 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1189032.02 μs
Self CPU Time 0.00 μs
Self Device Time 1189032.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45304 warnings generated when compiling for host.
Suppressed 45336 warnings (45289 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:7:35 bugprone-macro-parentheses
7 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:8:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
8 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:24:5: warning: 2 adjacent parameters of 'fused_assignment_kernel' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
24 | int64_t chunk_size,
| ^~~~~~~~~~~~~~~~~~~
25 | int64_t D,
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:24:13: note: the first parameter in the range is 'chunk_size'
24 | int64_t chunk_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:25:13: note: the last parameter in the range is 'D'
25 | int64_t D,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:29:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int row = blockIdx.x * blockDim.y + threadIdx.y + start_idx;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:30:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:31:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int col = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:65:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
65 | for (int s = blockDim.x/2; s > 0; s >>= 1) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:84:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | for (int s = blockDim.x/2; s > 0; s >>= 1) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:96:19: warning: the parameter 'clusters' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
96 | torch::Tensor clusters,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:98:19: warning: the parameter 'bn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
98 | torch::Tensor bn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:99:19: warning: the parameter 'bn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
99 | torch::Tensor bn_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:100:19: warning: the parameter 'bn_running_mean' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
100 | torch::Tensor bn_running_mean,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:101:19: warning: the parameter 'bn_running_var' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
101 | torch::Tensor bn_running_var,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:102:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
102 | int64_t feature_size,
| ^~~~~~~~~~~~~~~~~~~~~
103 | int64_t cluster_size,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:102:13: note: the first parameter in the range is 'feature_size'
102 | int64_t feature_size,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:103:13: note: the last parameter in the range is 'cluster_size'
103 | int64_t cluster_size,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_47/b4_s2_netvlad_fused_streams/edit_1/edit_1.cu:136:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | int stream_idx = (chunk_start / CHUNK_SIZE) % NUM_STREAMS;
| ^