← Back to Leaderboard

The AI CUDA Engineer 👷

21_Sigmoidoptimized_sigmoid_vectorized_combined_edit_1

Level 1 • Task 21
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor) -> torch.Tensor:
    """
    Applies Sigmoid activation to the input tensor.

    Args:
        x (torch.Tensor): Input tensor of any shape.

    Returns:
        torch.Tensor: Output tensor with Sigmoid applied, same shape as input.
    """
    return torch.sigmoid(x)


class Model(nn.Module):
    """
    Simple model that performs a Sigmoid activation.
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(x)


batch_size = 16
dim = 16384


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a Sigmoid activation.
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Sigmoid activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of any shape.

        Returns:
            torch.Tensor: Output tensor with Sigmoid applied, same shape as input.
        """
        return torch.sigmoid(x)

batch_size = 16
dim = 16384

def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 21 • 21_Sigmoid)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 sigmoid_shared_mem_optimized_base 0.01 1.11 4.82
🥇 21_sigmoid_modular_device_base 0.01 1.11 4.82
🥇 sigmoid_unroll_optimized_base_base 0.01 1.11 4.82
🥇 sigmoid_min_sync_base_base 0.01 1.11 4.82
🥇 optimized_sigmoid_cuda_base 0.01 1.11 4.82
🥇 optimized_sigmoid_limited_sync_base 0.01 1.11 4.82
🥇 sigmoid_ldg_vectorized_base 0.01 1.11 4.82
🥇 optimized_sigmoid_cuda_base 0.01 1.11 4.82
🥇 optimized_sigmoid_vectorized_combined_edit_1 0.01 1.11 4.82
🥇 21_Sigmoid_optimized_memory_base 0.01 1.11 4.82
🥇 sigmoid_minimal_sync_base_base 0.01 1.11 4.82
🥇 vectorized_ldg_aligned_edit_1 0.01 1.11 4.82
🥇 nondivergent_vectorized_sigmoid_base 0.01 1.11 4.82
🥇 vectorized_no_sync_base 0.01 1.11 4.82
🥇 vectorized_sigmoid_base 0.01 1.11 4.82
🥇 syncthreads_minimal_sigmoid_base 0.01 1.11 4.82
🥇 vectorized_ldg_aligned_base 0.01 1.11 4.82
🥇 optimized_sigmoid_vectorized_combined_base 0.01 1.11 4.82
🥇 optimized_sigmoid_blocksize_tuning_edit_1 0.01 1.11 4.82
🥇 optimized_sigmoid_blocksize_tuning_base 0.01 1.11 4.82
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <type_traits>

// Define an inline device function for exponentiation, specialized for float and double.

template <typename T>
__device__ inline T myExp(T x);

template <>
__device__ inline float myExp<float>(float x) {
    return expf(x);
}

template <>
__device__ inline double myExp<double>(double x) {
    return exp(x);
}

// Union to facilitate vectorized load and store operations
// VecT: vector type (e.g., float4 or double2), VecSize: number of scalar elements in VecT

template <typename scalar_t, typename VecT, int VecSize>
union VecUnion {
  VecT vec;
  scalar_t arr[VecSize];
};

// Vectorized kernel processing multiple elements per thread using 128-bit loads/stores
// It uses __ldg() to optimize read-only global memory accesses.

template <typename scalar_t, typename VecT, int VecSize>
__global__ void sigmoid_vectorized_kernel(const scalar_t* __restrict__ input,
                                          scalar_t* __restrict__ output,
                                          int64_t vec_count) {
    const int tid = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride = blockDim.x * gridDim.x;
    
    for (int idx = tid; idx < vec_count; idx += stride) {
        VecUnion<scalar_t, VecT, VecSize> in_union;
        VecUnion<scalar_t, VecT, VecSize> out_union;
        
        // Load using __ldg for read-only cache-optimized access
        in_union.vec = __ldg(reinterpret_cast<const VecT*>(input) + idx);
        
        #pragma unroll
        for (int i = 0; i < VecSize; i++) {
            // Fused computation with fewer intermediates
            out_union.arr[i] = scalar_t(1) / (scalar_t(1) + myExp(-in_union.arr[i]));
        }

        // Vectorized store
        reinterpret_cast<VecT*>(output)[idx] = out_union.vec;
    }
}

// Scalar kernel for processing tail elements that don't fit in a full vectorized load/store

template <typename scalar_t>
__global__ void sigmoid_scalar_kernel(const scalar_t* __restrict__ input,
                                      scalar_t* __restrict__ output,
                                      int64_t start,
                                      int64_t size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x + start;
    if (idx < size) {
        scalar_t val = __ldg(&input[idx]);
        scalar_t exp_val = myExp(-val);
        output[idx] = static_cast<scalar_t>(1) / (static_cast<scalar_t>(1) + exp_val);
    }
}

// The forward function prepares the output tensor and launches the appropriate kernels
// It handles vectorized processing for 128-bit aligned data and falls back to a scalar kernel for tail elements.

torch::Tensor forward(torch::Tensor input) {
    auto output = torch::empty_like(input);
    const int64_t size = input.numel();
    const int threads = 256;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "sigmoid_vectorized_combined", ([&] {
        const auto* input_data = input.data_ptr<scalar_t>();
        auto* output_data = output.data_ptr<scalar_t>();

        // Determine the vectorization factor and vector type based on the scalar type
        int vecSize = 1;
        int64_t vec_elements = 0;
        int blocks = 0;

        if (std::is_same<scalar_t, float>::value) {
            vecSize = 4; // 128-bit: 4 x float
            vec_elements = size / vecSize; // number of full vectorized groups
            blocks = (vec_elements + threads - 1) / threads;
            if (vec_elements > 0) {
                sigmoid_vectorized_kernel<scalar_t, float4, 4><<<blocks, threads>>>(input_data, output_data, vec_elements);
            }
        } else if (std::is_same<scalar_t, double>::value) {
            vecSize = 2; // 128-bit: 2 x double
            vec_elements = size / vecSize;
            blocks = (vec_elements + threads - 1) / threads;
            if (vec_elements > 0) {
                sigmoid_vectorized_kernel<scalar_t, double2, 2><<<blocks, threads>>>(input_data, output_data, vec_elements);
            }
        }
        
        // Process any remaining tail elements not covered by vectorized loads/stores
        int64_t vec_aligned_size = vec_elements * vecSize;
        int64_t tail = size - vec_aligned_size;
        if (tail > 0) {
            int tail_blocks = (tail + threads - 1) / threads;
            sigmoid_scalar_kernel<scalar_t><<<tail_blocks, threads>>>(input_data, output_data, vec_aligned_size, size);
        }
    }));
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &forward, "Optimized Sigmoid forward (CUDA) with vectorized and scalar loads");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::to
CPU Time 240150.78 μs
Device Time 40.19 μs
Self CPU Time 39.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 240111.47 μs
Device Time 40.19 μs
Self CPU Time 99.17 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 259825.16 μs
Device Time 0.00 μs
Self CPU Time 20174.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 239438.97 μs
Device Time 0.00 μs
Self CPU Time 239438.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 512839.66 μs
Device Time 22953.25 μs
Self CPU Time 512839.66 μs
Self Device Time 22953.25 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void sigmoid_vectorized_kernel<float, float4, 4>(float const*, float*, long)
CPU Time 0.00 μs
Device Time 31617.94 μs
Self CPU Time 0.00 μs
Self Device Time 31617.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 19941.94 μs
Device Time 44272.72 μs
Self CPU Time 19941.94 μs
Self Device Time 44272.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 65421.73 μs
Device Time 655465.59 μs
Self CPU Time 14576.07 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 50849.81 μs
Device Time 655465.59 μs
Self CPU Time 16522.34 μs
Self Device Time 655465.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 655465.59 μs
Self CPU Time 0.00 μs
Self Device Time 655465.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45281 warnings generated when compiling for host.
Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:37:21 bugprone-narrowing-conversions
37 | const int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:38:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:63:39: warning: 2 adjacent parameters of 'sigmoid_scalar_kernel' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
63 | int64_t start,
| ^~~~~~~~~~~~~~
64 | int64_t size) {
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:63:47: note: the first parameter in the range is 'start'
63 | int64_t start,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:64:47: note: the last parameter in the range is 'size'
64 | int64_t size) {
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:65:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
65 | int idx = blockIdx.x * blockDim.x + threadIdx.x + start;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_1/task_21/b4_s1_optimized_sigmoid_vectorized_combined/edit_1/edit_1.cu:81:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
81 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "sigmoid_vectorized_combined", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^