← Back to Leaderboard

The AI CUDA Engineer 👷

24_LogSoftmaxcombined_logsoftmax_base

Level 1 • Task 24
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Applies LogSoftmax activation to the input tensor.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, dim)
        dim (int): Dimension along which to apply LogSoftmax

    Returns:
        torch.Tensor: Output tensor with LogSoftmax applied, same shape as input
    """
    return F.log_softmax(x, dim=dim)


class Model(nn.Module):
    """
    Simple model that performs a LogSoftmax activation.
    """

    def __init__(self, dim):
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(x, self.dim)


batch_size = 16
dim = 16384
sm_dim = 1


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return [sm_dim]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs a LogSoftmax activation.
    """

    def __init__(self, dim: int = 1):
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies LogSoftmax activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, dim).

        Returns:
            torch.Tensor: Output tensor with LogSoftmax applied, same shape as input.
        """
        return torch.log_softmax(x, dim=self.dim)


batch_size = 16
dim = 16384
sm_dim = 1


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return [sm_dim]

Kernel Information

Related Kernels (Level 1, Task 24 • 24_LogSoftmax)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 hybrid_logsoftmax_kernel_base 0.01 1.07 3.72
🥇 unroll_tuned_logsoftmax_base 0.01 1.07 3.72
🥇 shared_warp_logsoftmax_base_base 0.01 1.07 3.72
🥇 min_atomic_logsoftmax_base 0.01 1.07 3.72
🥇 combined_logsoftmax_base 0.01 1.07 3.72
🥇 efficient_logsoftmax_combined_kernel_base 0.01 1.07 3.72
🥇 optimized_128_ldg_logsoftmax_base 0.01 1.07 3.72
🥇 atomic_free_logsoftmax_base 0.01 1.07 3.72
🥇 strided_logsoftmax_base_base 0.01 1.07 3.72
🥇 optimized_reduction_logsoftmax_base 0.01 1.07 3.72
11 24_logsoftmax_vectorized_loads_edit_1 0.01 0.97 3.38
11 24_logsoftmax_unroll_edit_1 0.01 0.97 3.38
11 tuned_logsoftmax_base 0.01 0.97 3.38
11 grid2d_logsoftmax_base 0.01 0.97 3.38
11 24_logsoftmax_fast_edit_1 0.01 0.97 3.38
11 24_logsoftmax_fast_base 0.01 0.97 3.38
11 unroll_logsoftmax_base 0.01 0.97 3.38
11 24_logsoftmax_unroll_base 0.01 0.97 3.38
11 24_logsoftmax_with_stride_base 0.01 0.97 3.38
20 log_softmax_2d_blocking_base 0.01 0.89 3.10
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>
#include <cmath>

// Combined kernel: uses compile-time block size tuning and warp-level reductions
// to efficiently compute the LogSoftmax over the last dimension of the input tensor.

template <typename scalar_t, int BLOCK_SIZE>
__global__ void combined_logsoftmax_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int dim_size) {

    // Each block processes one row (batch element)
    int row = blockIdx.x;
    const scalar_t* input_row = input + row * dim_size;
    scalar_t* output_row = output + row * dim_size;

    // Phase 1: Compute the maximum value using warp-level reduction
    scalar_t thread_max = -std::numeric_limits<scalar_t>::infinity();
    
    // Each thread processes multiple elements
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        scalar_t val = input_row[idx];
        thread_max = (val > thread_max) ? val : thread_max;
    }

    // Warp-level reduction for maximum using shuffle intrinsics
    unsigned int mask = 0xffffffff;
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        scalar_t other = __shfl_down_sync(mask, thread_max, offset);
        thread_max = (other > thread_max) ? other : thread_max;
    }

    // Shared memory to gather per-warp maximums
    __shared__ scalar_t warp_max[32];  // Supports up to 32 warps per block
    int warp_id = threadIdx.x / warpSize;
    int lane = threadIdx.x % warpSize;
    if (lane == 0) {
        warp_max[warp_id] = thread_max;
    }
    __syncthreads();

    // Thread 0 computes the block-wide maximum from warp results
    scalar_t max_val = warp_max[0];
    if (threadIdx.x == 0) {
        int num_warps = (BLOCK_SIZE + warpSize - 1) / warpSize;
        for (int i = 1; i < num_warps; i++) {
            max_val = (warp_max[i] > max_val) ? warp_max[i] : max_val;
        }
        // Store global max in warp_max[0] for broadcast
        warp_max[0] = max_val;
    }
    __syncthreads();
    max_val = warp_max[0];

    // Phase 2: Compute the sum of exponentials (with numerical stability)
    scalar_t thread_sum = 0;
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        thread_sum += exp(input_row[idx] - max_val);
    }

    // Warp-level reduction for sum
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        thread_sum += __shfl_down_sync(mask, thread_sum, offset);
    }

    // Use shared memory to gather per-warp sums
    __shared__ scalar_t warp_sum[32];
    if (lane == 0) {
        warp_sum[warp_id] = thread_sum;
    }
    __syncthreads();

    // Thread 0 sums the warp results to get the total sum
    scalar_t total_sum = 0;
    if (threadIdx.x == 0) {
        int num_warps = (BLOCK_SIZE + warpSize - 1) / warpSize;
        for (int i = 0; i < num_warps; i++) {
            total_sum += warp_sum[i];
        }
        warp_sum[0] = total_sum; // broadcast the total sum
    }
    __syncthreads();
    total_sum = warp_sum[0];
    scalar_t log_sum = log(total_sum);

    // Phase 3: Compute the final LogSoftmax values and write back
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        output_row[idx] = (input_row[idx] - max_val) - log_sum;
    }
}


// Host function: Permutes input tensor so that the specified dimension is last,
// selects an optimal block size based on the dimension size, launches the kernel,
// and then inversely permutes the output to the original layout.

torch::Tensor combined_logsoftmax_cuda_forward(torch::Tensor input, int64_t dim) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(input.scalar_type() == torch::kFloat32 || input.scalar_type() == torch::kFloat64,
                "input must be float32 or float64");

    int64_t ndim = input.dim();
    TORCH_CHECK(dim >= -ndim && dim < ndim, "dim out of range");
    dim = (dim >= 0) ? dim : dim + ndim;

    // Permute input so that the target dimension is the last dimension
    std::vector<int64_t> permute_dims;
    for (int64_t i = 0; i < ndim; ++i) {
        if (i != dim) {
            permute_dims.push_back(i);
        }
    }
    permute_dims.push_back(dim);
    input = input.permute(permute_dims).contiguous();

    int64_t batch_size = input.numel() / input.size(-1);
    int64_t dim_size = input.size(-1);
    auto output = torch::empty_like(input);

    // Select an optimal block size from {32, 64, 128, 256, 512} based on dim_size
    int optimal_block_size = 256; // default value
    if (dim_size <= 32) {
        optimal_block_size = 32;
    } else if (dim_size <= 64) {
        optimal_block_size = 64;
    } else if (dim_size <= 128) {
        optimal_block_size = 128;
    } else if (dim_size <= 256) {
        optimal_block_size = 256;
    } else if (dim_size <= 512) {
        optimal_block_size = 512;
    } else {
        optimal_block_size = 512; // for larger dims, cap at 512 threads per block
    }

    int blocks = batch_size;
    dim3 grid(blocks);

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "combined_logsoftmax_cuda_forward", ([&] {
        if (optimal_block_size == 32) {
            combined_logsoftmax_kernel<scalar_t, 32><<<grid, 32>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 64) {
            combined_logsoftmax_kernel<scalar_t, 64><<<grid, 64>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 128) {
            combined_logsoftmax_kernel<scalar_t, 128><<<grid, 128>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 256) {
            combined_logsoftmax_kernel<scalar_t, 256><<<grid, 256>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 512) {
            combined_logsoftmax_kernel<scalar_t, 512><<<grid, 512>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        }
    }));

    // Inverse permutation to restore the original tensor layout
    std::vector<int64_t> inverse_permute_dims(ndim);
    for (size_t i = 0; i < permute_dims.size(); ++i) {
        inverse_permute_dims[permute_dims[i]] = i;
    }
    output = output.permute(inverse_permute_dims);
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &combined_logsoftmax_cuda_forward, "Combined LogSoftmax forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.112 inst/cycle 0.000 5
Executed Ipc Elapsed 0.100 inst/cycle 0.000 5
Issue Slots Busy 27.850 % 0.035 5
Issued Ipc Active 1.114 inst/cycle 0.000 5
SM Busy 27.850 % 0.035 5
Memory Throughput 133058544578.312 byte/second 337237587015650368.000 5
Mem Busy 6.216 % 0.002 5
Max Bandwidth 5.872 % 0.002 5
L1/TEX Hit Rate 50.000 % 0.000 5
L2 Hit Rate 68.484 % 0.038 5
Mem Pipes Busy 2.212 % 0.000 5
Warp Cycles Per Issued Instruction 13.968 cycle 0.060 5
Warp Cycles Per Executed Instruction 14.012 cycle 0.062 5
Avg. Active Threads Per Warp 31.520 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.300 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 4.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.240 % 0.000 5
Achieved Active Warps Per SM 15.516 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 440618.22 μs
Device Time 39.91 μs
Self CPU Time 40.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 440577.91 μs
Device Time 39.91 μs
Self CPU Time 97.39 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 459307.26 μs
Device Time 0.00 μs
Self CPU Time 19188.00 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 439919.93 μs
Device Time 0.00 μs
Self CPU Time 439919.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 435390.76 μs
Device Time 20415.57 μs
Self CPU Time 435390.76 μs
Self Device Time 20415.57 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void combined_logsoftmax_kernel<float, 512>(float const*, float*, int)
CPU Time 0.00 μs
Device Time 48564.16 μs
Self CPU Time 0.00 μs
Self Device Time 48564.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 21137.32 μs
Device Time 39924.59 μs
Self CPU Time 21137.32 μs
Self Device Time 39924.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 71799.98 μs
Device Time 585338.78 μs
Self CPU Time 11049.32 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 60755.15 μs
Device Time 585338.78 μs
Self CPU Time 15161.61 μs
Self Device Time 585338.78 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 585417.31 μs
Self CPU Time 0.00 μs
Self Device Time 585417.31 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45287 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:18:15 bugprone-narrowing-conversions
18 | int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:26:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:40:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | int warp_id = threadIdx.x / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:41:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | int lane = threadIdx.x % warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:62:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
62 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:92:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
92 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:135:33: warning: repeated branch body in conditional chain [bugprone-branch-clone]
135 | } else if (dim_size <= 512) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:137:6: note: end of the original
137 | } else {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:137:12: note: clone 1 starts here
137 | } else {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:141:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | int blocks = batch_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:144:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
144 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "combined_logsoftmax_cuda_forward", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b4_s0_combined_logsoftmax/base/base.cu:176:49: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'value_type' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
176 | inverse_permute_dims[permute_dims[i]] = i;
| ^