← Back to Leaderboard

The AI CUDA Engineer 👷

24_LogSoftmaxefficient_logsoftmax_combined_kernel_base

Level 1 • Task 24
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Applies LogSoftmax activation to the input tensor.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, dim)
        dim (int): Dimension along which to apply LogSoftmax

    Returns:
        torch.Tensor: Output tensor with LogSoftmax applied, same shape as input
    """
    return F.log_softmax(x, dim=dim)


class Model(nn.Module):
    """
    Simple model that performs a LogSoftmax activation.
    """

    def __init__(self, dim):
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(x, self.dim)


batch_size = 16
dim = 16384
sm_dim = 1


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return [sm_dim]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs a LogSoftmax activation.
    """

    def __init__(self, dim: int = 1):
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies LogSoftmax activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, dim).

        Returns:
            torch.Tensor: Output tensor with LogSoftmax applied, same shape as input.
        """
        return torch.log_softmax(x, dim=self.dim)


batch_size = 16
dim = 16384
sm_dim = 1


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return [sm_dim]

Kernel Information

Related Kernels (Level 1, Task 24 • 24_LogSoftmax)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 hybrid_logsoftmax_kernel_base 0.01 1.07 3.72
🥇 unroll_tuned_logsoftmax_base 0.01 1.07 3.72
🥇 shared_warp_logsoftmax_base_base 0.01 1.07 3.72
🥇 min_atomic_logsoftmax_base 0.01 1.07 3.72
🥇 combined_logsoftmax_base 0.01 1.07 3.72
🥇 efficient_logsoftmax_combined_kernel_base 0.01 1.07 3.72
🥇 optimized_128_ldg_logsoftmax_base 0.01 1.07 3.72
🥇 atomic_free_logsoftmax_base 0.01 1.07 3.72
🥇 strided_logsoftmax_base_base 0.01 1.07 3.72
🥇 optimized_reduction_logsoftmax_base 0.01 1.07 3.72
11 24_logsoftmax_vectorized_loads_edit_1 0.01 0.97 3.38
11 24_logsoftmax_unroll_edit_1 0.01 0.97 3.38
11 tuned_logsoftmax_base 0.01 0.97 3.38
11 grid2d_logsoftmax_base 0.01 0.97 3.38
11 24_logsoftmax_fast_edit_1 0.01 0.97 3.38
11 24_logsoftmax_fast_base 0.01 0.97 3.38
11 unroll_logsoftmax_base 0.01 0.97 3.38
11 24_logsoftmax_unroll_base 0.01 0.97 3.38
11 24_logsoftmax_with_stride_base 0.01 0.97 3.38
20 log_softmax_2d_blocking_base 0.01 0.89 3.10
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>
#include <cmath>

// Combined kernel utilizing warp-level primitives for max reduction and unrolled reduction for sum of exponentials

template <typename scalar_t, int BLOCK_SIZE>
__global__ void efficient_logsoftmax_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int dim_size) {

    int batch_idx = blockIdx.x;
    const scalar_t* input_row = input + batch_idx * dim_size;
    scalar_t* output_row = output + batch_idx * dim_size;

    __shared__ scalar_t sdata[BLOCK_SIZE];

    // Phase 1: Compute the maximum value in the row using warp-level reduction
    scalar_t local_max = -std::numeric_limits<scalar_t>::infinity();
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        scalar_t val = input_row[idx];
        local_max = max(local_max, val);
    }

    unsigned int mask = 0xffffffff;
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        scalar_t other = __shfl_down_sync(mask, local_max, offset);
        local_max = max(local_max, other);
    }

    if (threadIdx.x % warpSize == 0) {
        sdata[threadIdx.x / warpSize] = local_max;
    }
    __syncthreads();

    if (threadIdx.x < BLOCK_SIZE / warpSize) {
        scalar_t block_max = -std::numeric_limits<scalar_t>::infinity();
        if (threadIdx.x < BLOCK_SIZE / warpSize) {
            block_max = max(block_max, sdata[threadIdx.x]);
        }
        sdata[threadIdx.x] = block_max;
    }
    __syncthreads();

    scalar_t max_val = sdata[0];

    // Phase 2: Compute the sum of exp(x - max_val) using warp-level reduction and unrolling
    scalar_t local_sum = 0;
    #pragma unroll
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        scalar_t exp_val = exp(input_row[idx] - max_val);
        local_sum += exp_val;
    }

    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        local_sum += __shfl_down_sync(mask, local_sum, offset);
    }

    if (threadIdx.x % warpSize == 0) {
        sdata[threadIdx.x / warpSize] = local_sum;
    }
    __syncthreads();

    if (threadIdx.x == 0) {
        scalar_t block_sum = 0;
        for (int i = 0; i < BLOCK_SIZE / warpSize; ++i) {
            block_sum += sdata[i];
        }
        sdata[0] = block_sum;
    }
    __syncthreads();

    scalar_t sum = sdata[0];
    scalar_t log_sum = log(sum);

    // Phase 3: Write back the final LogSoftmax values
    for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
        output_row[idx] = (input_row[idx] - max_val) - log_sum;
    }
}

// Host function

torch::Tensor efficient_logsoftmax_cuda_forward(torch::Tensor input, int64_t dim) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(
        input.scalar_type() == torch::kFloat32 || input.scalar_type() == torch::kFloat64,
        "input must be float32 or float64");

    int64_t ndim = input.dim();
    TORCH_CHECK(dim >= -ndim && dim < ndim, "dim out of range");
    dim = dim >= 0 ? dim : dim + ndim;

    std::vector<int64_t> permute_dims;
    for (int64_t i = 0; i < ndim; ++i) {
        if (i != dim) {
            permute_dims.push_back(i);
        }
    }
    permute_dims.push_back(dim);

    input = input.permute(permute_dims).contiguous();
    int64_t batch_size = input.numel() / input.size(-1);
    int64_t dim_size = input.size(-1);

    auto output = torch::empty_like(input);

    int optimal_block_size = 256;
    if (dim_size <= 32) {
        optimal_block_size = 32;
    } else if (dim_size <= 64) {
        optimal_block_size = 64;
    } else if (dim_size <= 128) {
        optimal_block_size = 128;
    } else if (dim_size <= 256) {
        optimal_block_size = 256;
    } else if (dim_size <= 512) {
        optimal_block_size = 512;
    } else {
        optimal_block_size = 512;
    }

    const int blocks = batch_size;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "efficient_logsoftmax_cuda_forward", ([&] {
        if (optimal_block_size == 32) {
            efficient_logsoftmax_kernel<scalar_t, 32><<<blocks, 32>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 64) {
            efficient_logsoftmax_kernel<scalar_t, 64><<<blocks, 64>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 128) {
            efficient_logsoftmax_kernel<scalar_t, 128><<<blocks, 128>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 256) {
            efficient_logsoftmax_kernel<scalar_t, 256><<<blocks, 256>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        } else if (optimal_block_size == 512) {
            efficient_logsoftmax_kernel<scalar_t, 512><<<blocks, 512>>>(
                input.data_ptr<scalar_t>(),
                output.data_ptr<scalar_t>(),
                dim_size);
        }
    }));

    std::vector<int64_t> inverse_permute_dims(ndim);
    for (size_t i = 0; i < permute_dims.size(); ++i) {
        inverse_permute_dims[permute_dims[i]] = i;
    }
    output = output.permute(inverse_permute_dims);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &efficient_logsoftmax_cuda_forward, "Efficient LogSoftmax forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.192 inst/cycle 0.000 5
Executed Ipc Elapsed 0.110 inst/cycle 0.000 5
Issue Slots Busy 29.908 % 0.012 5
Issued Ipc Active 1.198 inst/cycle 0.000 5
SM Busy 29.908 % 0.012 5
Memory Throughput 145997433894.966 byte/second 2180483662906620672.000 5
Mem Busy 6.882 % 0.001 5
Max Bandwidth 6.432 % 0.003 5
L1/TEX Hit Rate 50.000 % 0.000 5
L2 Hit Rate 68.322 % 0.018 5
Mem Pipes Busy 2.454 % 0.001 5
Warp Cycles Per Issued Instruction 13.212 cycle 0.089 5
Warp Cycles Per Executed Instruction 13.254 cycle 0.088 5
Avg. Active Threads Per Warp 31.850 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.730 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 10.000 block 0.000 5
Block Limit Warps 4.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.184 % 0.000 5
Achieved Active Warps Per SM 15.480 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 218636.34 μs
Device Time 40.03 μs
Self CPU Time 35.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 218600.82 μs
Device Time 40.03 μs
Self CPU Time 79.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 233266.71 μs
Device Time 0.00 μs
Self CPU Time 15084.53 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 217989.58 μs
Device Time 0.00 μs
Self CPU Time 217989.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 360553.69 μs
Device Time 16982.48 μs
Self CPU Time 360553.69 μs
Self Device Time 16982.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void efficient_logsoftmax_kernel<float, 512>(float const*, float*, int)
CPU Time 0.00 μs
Device Time 38215.89 μs
Self CPU Time 0.00 μs
Self Device Time 38215.89 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 13905.45 μs
Device Time 33420.83 μs
Self CPU Time 13905.45 μs
Self Device Time 33420.83 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 51305.67 μs
Device Time 489550.17 μs
Self CPU Time 9479.01 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 41828.52 μs
Device Time 489550.17 μs
Self CPU Time 12424.83 μs
Self Device Time 489550.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 489550.17 μs
Self CPU Time 0.00 μs
Self Device Time 489550.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45285 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:16:21 bugprone-narrowing-conversions
16 | int batch_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:24:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:54:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
54 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:81:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | for (int idx = threadIdx.x; idx < dim_size; idx += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:121:33: warning: repeated branch body in conditional chain [bugprone-branch-clone]
121 | } else if (dim_size <= 512) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:123:6: note: end of the original
123 | } else {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:123:12: note: clone 1 starts here
123 | } else {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:127:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | const int blocks = batch_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:129:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
129 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "efficient_logsoftmax_cuda_forward", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_24/b8_s3_efficient_logsoftmax_combined_kernel/base/base.cu:160:49: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'value_type' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
160 | inverse_permute_dims[permute_dims[i]] = i;
| ^