import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
"""
Applies LogSoftmax activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, dim)
dim (int): Dimension along which to apply LogSoftmax
Returns:
torch.Tensor: Output tensor with LogSoftmax applied, same shape as input
"""
return F.log_softmax(x, dim=dim)
class Model(nn.Module):
"""
Simple model that performs a LogSoftmax activation.
"""
def __init__(self, dim):
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
return fn(x, self.dim)
batch_size = 16
dim = 16384
sm_dim = 1
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [sm_dim]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs a LogSoftmax activation.
"""
def __init__(self, dim: int = 1):
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies LogSoftmax activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, dim).
Returns:
torch.Tensor: Output tensor with LogSoftmax applied, same shape as input.
"""
return torch.log_softmax(x, dim=self.dim)
batch_size = 16
dim = 16384
sm_dim = 1
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [sm_dim]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>
#include <cmath>
// This kernel uses manual loop unrolling with #pragma unroll for critical reduction loops.
// The unrolling decreases loop overhead and improves ILP, while maintaining full precision.
template <typename scalar_t>
__global__ void log_softmax_forward_kernel_unroll(
const scalar_t* __restrict__ input,
scalar_t* __restrict__ output,
const int dim_size) {
// Each block processes one row (batch element)
int batch_idx = blockIdx.x;
const scalar_t* input_row = input + batch_idx * dim_size;
scalar_t* output_row = output + batch_idx * dim_size;
const int tid = threadIdx.x;
const int blockSize = blockDim.x;
const int warpSize = 32;
const unsigned int mask = 0xffffffff;
// Step 1: Compute local maximum
scalar_t local_max = -std::numeric_limits<scalar_t>::infinity();
for (int i = tid; i < dim_size; i += blockSize) {
scalar_t val = input_row[i];
local_max = (val > local_max) ? val : local_max;
}
// Warp-level reduction for maximum using unrolled loop
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
scalar_t temp = __shfl_down_sync(mask, local_max, offset);
local_max = (temp > local_max) ? temp : local_max;
}
// Allocate shared memory for per-warp results
extern __shared__ __align__(sizeof(scalar_t)) unsigned char smem[];
scalar_t* shared_data = reinterpret_cast<scalar_t*>(smem);
int warp_id = tid / warpSize;
if ((tid % warpSize) == 0) {
shared_data[warp_id] = local_max;
}
__syncthreads();
// Final reduction over warps for maximum (performed by thread 0)
if (tid == 0) {
int num_warps = (blockSize + warpSize - 1) / warpSize;
scalar_t global_max = shared_data[0];
#pragma unroll
for (int i = 1; i < num_warps; i++) {
global_max = (shared_data[i] > global_max) ? shared_data[i] : global_max;
}
shared_data[0] = global_max; // broadcast global maximum
}
__syncthreads();
scalar_t global_max = shared_data[0];
// Step 2: Compute the sum of exp(val - global_max)
scalar_t local_sum = 0;
for (int i = tid; i < dim_size; i += blockSize) {
scalar_t exp_val = exp(input_row[i] - global_max);
local_sum += exp_val;
output_row[i] = exp_val; // store intermediate result
}
// Warp-level reduction for sum, unrolling the loop
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
local_sum += __shfl_down_sync(mask, local_sum, offset);
}
if ((tid % warpSize) == 0) {
shared_data[warp_id] = local_sum;
}
__syncthreads();
scalar_t global_sum;
if (tid == 0) {
int num_warps = (blockSize + warpSize - 1) / warpSize;
global_sum = shared_data[0];
#pragma unroll
for (int i = 1; i < num_warps; i++) {
global_sum += shared_data[i];
}
shared_data[0] = global_sum; // broadcast global sum
}
__syncthreads();
global_sum = shared_data[0];
scalar_t log_sum = log(global_sum);
// Step 3: Compute final log softmax output
for (int i = tid; i < dim_size; i += blockSize) {
output_row[i] = (input_row[i] - global_max) - log_sum;
}
}
// Host function launching the kernel
torch::Tensor log_softmax_cuda_forward(torch::Tensor input, int64_t dim) {
TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
TORCH_CHECK(
input.scalar_type() == torch::kFloat32 || input.scalar_type() == torch::kFloat64,
"input must be float32 or float64");
int64_t ndim = input.dim();
TORCH_CHECK(dim >= -ndim && dim < ndim, "dim out of range");
dim = (dim >= 0) ? dim : dim + ndim;
// Permute input to bring 'dim' to the last dimension
std::vector<int64_t> permute_dims;
for (int64_t i = 0; i < ndim; ++i) {
if (i != dim) {
permute_dims.push_back(i);
}
}
permute_dims.push_back(dim);
input = input.permute(permute_dims).contiguous();
int64_t batch_size = input.numel() / input.size(-1);
int64_t dim_size = input.size(-1);
auto output = torch::empty_like(input);
// Choose number of threads: next power of two of dim_size, capped at 1024
int threads = 1;
while (threads < dim_size) threads <<= 1;
if (threads > 1024) threads = 1024;
// Compute required shared memory: one scalar per warp
int warpSize = 32;
int num_warps = (threads + warpSize - 1) / warpSize;
size_t shared_mem_size = num_warps * sizeof(float); // temporary, overridden per type below
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "log_softmax_forward_cuda_unroll", ([&] {
shared_mem_size = num_warps * sizeof(scalar_t);
log_softmax_forward_kernel_unroll<scalar_t><<<batch_size, threads, shared_mem_size>>>(
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
dim_size);
}));
// Inverse permutation to restore original shape
std::vector<int64_t> inverse_permute_dims(ndim);
for (size_t i = 0; i < permute_dims.size(); ++i) {
inverse_permute_dims[permute_dims[i]] = i;
}
output = output.permute(inverse_permute_dims);
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &log_softmax_cuda_forward, "LogSoftmax forward with loop unrolling (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 1.512 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.140 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 37.936 | % | 0.291 | 5 |
Issued Ipc Active | 1.520 | inst/cycle | 0.000 | 5 |
SM Busy | 37.936 | % | 0.291 | 5 |
Memory Throughput | 110006274950.140 | byte/second | 1550931883055260160.000 | 5 |
Mem Busy | 6.134 | % | 0.004 | 5 |
Max Bandwidth | 7.370 | % | 0.006 | 5 |
L1/TEX Hit Rate | 60.000 | % | 0.000 | 5 |
L2 Hit Rate | 76.170 | % | 0.021 | 5 |
Mem Pipes Busy | 2.478 | % | 0.001 | 5 |
Warp Cycles Per Issued Instruction | 20.590 | cycle | 0.009 | 5 |
Warp Cycles Per Executed Instruction | 20.662 | cycle | 0.009 | 5 |
Avg. Active Threads Per Warp | 31.500 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 30.190 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 2.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 7.000 | block | 0.000 | 5 |
Block Limit Warps | 2.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 49.020 | % | 0.000 | 5 |
Achieved Active Warps Per SM | 31.372 | warp | 0.000 | 5 |
Rule | Description |
---|---|
INF HighPipeUtilization | ALU is the highest-utilized pipeline (26.8%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (49.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 378716.88 | μs |
Device Time | 40.19 | μs |
Self CPU Time | 50.38 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 378666.50 | μs |
Device Time | 40.19 | μs |
Self CPU Time | 105.96 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 399628.48 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 21421.04 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 378028.67 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 378028.67 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 491345.44 | μs |
Device Time | 22751.92 | μs |
Self CPU Time | 491345.44 | μs |
Self Device Time | 22751.92 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void log_softmax_forward_kernel_unroll<float>(float const*, float*, int) | ||
CPU Time | 0.00 | μs |
Device Time | 73976.10 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 73976.10 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 22910.56 | μs |
Device Time | 44721.47 | μs |
Self CPU Time | 22910.56 | μs |
Self Device Time | 44721.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 66188.23 | μs |
Device Time | 655404.68 | μs |
Self CPU Time | 14024.99 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 52164.21 | μs |
Device Time | 655404.68 | μs |
Self CPU Time | 16922.14 | μs |
Self Device Time | 655404.68 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 655404.68 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 655404.68 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45282 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.