import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor) -> torch.Tensor:
"""
Applies SELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with SELU applied, same shape as input.
"""
return F.selu(x)
class Model(nn.Module):
"""
Simple model that performs a SELU activation.
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
return fn(x)
batch_size = 16
dim = 16384
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [] # No special initialization inputs needed
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs a SELU activation.
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies SELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with SELU applied, same shape as input.
"""
return torch.selu(x)
batch_size = 16
dim = 16384
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [] # No special initialization inputs needed
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
// Device helper: define an inline exponential for float and double
template <typename scalar_t>
__device__ inline scalar_t my_exp(scalar_t x);
template <>
__device__ inline float my_exp<float>(float x) {
return expf(x);
}
template <>
__device__ inline double my_exp<double>(double x) {
return exp(x);
}
// Vectorized SELU kernel using 128-bit aligned loads/stores and __ldg() for read-only accesses
// For float, we use float4 (4 x 32-bit = 128-bit) and for double, double2 (2 x 64-bit = 128-bit).
template <typename scalar_t>
__global__ void selu_kernel(const scalar_t* __restrict__ input,
scalar_t* __restrict__ output,
size_t numel) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
// Determine vector size: 4 elements for float and 2 for double to achieve 128-bit access
const int vecSize = (sizeof(scalar_t) == 4 ? 4 : 2);
size_t numVec = numel / vecSize;
// Process vectorized portion
if (sizeof(scalar_t) == 4) {
using Vec = float4;
Vec* outVecPtr = reinterpret_cast<Vec*>(output);
const Vec* inVecPtr = reinterpret_cast<const Vec*>(input);
for (size_t i = tid; i < numVec; i += stride) {
// Use __ldg() to load from global memory (read-only cache)
Vec in_vec = __ldg(&inVecPtr[i]);
Vec out_vec;
// Apply SELU element-wise
out_vec.x = 1.05070098735548049342f * ((in_vec.x > 0.f) ? in_vec.x : 1.67326324235437728481f * (expf(in_vec.x) - 1.f));
out_vec.y = 1.05070098735548049342f * ((in_vec.y > 0.f) ? in_vec.y : 1.67326324235437728481f * (expf(in_vec.y) - 1.f));
out_vec.z = 1.05070098735548049342f * ((in_vec.z > 0.f) ? in_vec.z : 1.67326324235437728481f * (expf(in_vec.z) - 1.f));
out_vec.w = 1.05070098735548049342f * ((in_vec.w > 0.f) ? in_vec.w : 1.67326324235437728481f * (expf(in_vec.w) - 1.f));
outVecPtr[i] = out_vec;
}
} else {
using Vec = double2;
Vec* outVecPtr = reinterpret_cast<Vec*>(output);
const Vec* inVecPtr = reinterpret_cast<const Vec*>(input);
for (size_t i = tid; i < numVec; i += stride) {
Vec in_vec = __ldg(&inVecPtr[i]);
Vec out_vec;
out_vec.x = 1.05070098735548049342 * ((in_vec.x > 0.0) ? in_vec.x : 1.67326324235437728481 * (exp(in_vec.x) - 1.0));
out_vec.y = 1.05070098735548049342 * ((in_vec.y > 0.0) ? in_vec.y : 1.67326324235437728481 * (exp(in_vec.y) - 1.0));
outVecPtr[i] = out_vec;
}
}
// Process any remaining elements that don't fit into a full vector load/store
size_t remStart = numVec * vecSize;
for (size_t i = remStart + tid; i < numel; i += stride) {
scalar_t x = __ldg(&input[i]);
scalar_t res = (x > static_cast<scalar_t>(0))
? x
: static_cast<scalar_t>(1.67326324235437728481) * (my_exp(x) - static_cast<scalar_t>(1));
output[i] = static_cast<scalar_t>(1.05070098735548049342) * res;
}
}
// Host function exposed to Python via pybind11
// Launches the vectorized SELU kernel
torch::Tensor selu_forward(torch::Tensor input) {
TORCH_CHECK(input.is_cuda(), "Input tensor must be a CUDA tensor");
auto output = torch::empty_like(input);
const size_t numel = input.numel();
const int threads = 256;
const int blocks = (numel + threads - 1) / threads;
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "selu_forward_cuda", ([&] {
const scalar_t* input_ptr = input.data_ptr<scalar_t>();
scalar_t* output_ptr = output.data_ptr<scalar_t>();
selu_kernel<scalar_t><<<blocks, threads>>>(input_ptr, output_ptr, numel);
}));
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &selu_forward, "Vectorized SELU Activation Forward (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.980 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.388 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 29.012 | % | 0.059 | 5 |
Issued Ipc Active | 1.160 | inst/cycle | 0.000 | 5 |
SM Busy | 29.012 | % | 0.059 | 5 |
Memory Throughput | 282556380271.404 | byte/second | 3815562694300689920.000 | 5 |
Mem Busy | 13.438 | % | 0.014 | 5 |
Max Bandwidth | 12.390 | % | 0.014 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 66.536 | % | 0.008 | 5 |
Mem Pipes Busy | 7.450 | % | 0.004 | 5 |
Warp Cycles Per Issued Instruction | 31.298 | cycle | 0.029 | 5 |
Warp Cycles Per Executed Instruction | 37.076 | cycle | 0.040 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 29.820 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 10.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 58.130 | % | 0.175 | 5 |
Achieved Active Warps Per SM | 37.204 | warp | 0.072 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (57.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 429571.26 | μs |
Device Time | 40.32 | μs |
Self CPU Time | 44.04 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 429527.22 | μs |
Device Time | 40.32 | μs |
Self CPU Time | 96.38 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 449788.00 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 20784.64 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 428381.57 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 428381.57 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 517096.36 | μs |
Device Time | 22873.70 | μs |
Self CPU Time | 517096.36 | μs |
Self Device Time | 22873.70 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void selu_kernel<float>(float const*, float*, unsigned long) | ||
CPU Time | 0.00 | μs |
Device Time | 34440.89 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 34440.89 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 24376.46 | μs |
Device Time | 44141.16 | μs |
Self CPU Time | 24376.46 | μs |
Self Device Time | 44141.16 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 67495.44 | μs |
Device Time | 653638.47 | μs |
Self CPU Time | 14464.35 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 53034.70 | μs |
Device Time | 653638.47 | μs |
Self CPU Time | 16898.44 | μs |
Self Device Time | 653638.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 653638.47 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 653638.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45280 warnings generated when compiling for host. Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.