← Back to Leaderboard

The AI CUDA Engineer 👷

27_SELU_selu_2d_indexing_base

Level 1 • Task 27
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor) -> torch.Tensor:
    """
    Applies SELU activation to the input tensor.

    Args:
        x (torch.Tensor): Input tensor of any shape.

    Returns:
        torch.Tensor: Output tensor with SELU applied, same shape as input.
    """
    return F.selu(x)


class Model(nn.Module):
    """
    Simple model that performs a SELU activation.
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(x)


batch_size = 16
dim = 16384


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a SELU activation.
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies SELU activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of any shape.

        Returns:
            torch.Tensor: Output tensor with SELU applied, same shape as input.
        """
        return torch.selu(x)

batch_size = 16
dim = 16384

def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 27 • 27_SELU_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 selu_vectorized_base_base 0.01 1.10 4.96
🥇 selu_shared_opt_base 0.01 1.10 4.96
🥇 27_selu_aligned_ldg_base 0.01 1.10 4.96
🥇 27_selu_aligned_ldg_edit_1 0.01 1.10 4.96
5 27_selu_unroll_optimized_base 0.01 0.94 4.25
5 27_SELU_ 0.01 0.94 4.25
5 selu_kernel_combined_optimized_base 0.01 0.94 4.25
5 selu_atomic_optimized_base 0.01 0.94 4.25
5 27_selu_manual_unroll_base 0.01 0.94 4.25
5 modular_selu_optimized_base 0.01 0.94 4.25
5 selu_2d_indexing_base 0.01 0.94 4.25
5 selu_shared_mem_optimized_base 0.01 0.94 4.25
5 selu_kernel_combined_base 0.01 0.94 4.25
5 evenly_distributed_selu_base 0.01 0.94 4.25
5 selu_memory_coalesced_base_base 0.01 0.94 4.25
5 evenly_partitioned_selu_base 0.01 0.94 4.25
5 selu_even_load_balance_base 0.01 0.94 4.25
5 selu_atomic_minimal_base 0.01 0.94 4.25
5 selu_coalesced_access_base_base 0.01 0.94 4.25
5 27_selu_vectorized_base 0.01 0.94 4.25
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>

// Device helper: define an inline exponential function for float and double
template <typename scalar_t>
__device__ inline scalar_t my_exp(scalar_t x);

template <>
__device__ inline float my_exp<float>(float x) {
    return expf(x);
}

template <>
__device__ inline double my_exp<double>(double x) {
    return exp(x);
}

// CUDA kernel with 2D thread and block indexing for efficient mapping
// This kernel maps the flat 1D input array to a 2D grid of threads to enhance occupancy and performance

template <typename scalar_t>
__global__ void selu_kernel_2d_indexed(const scalar_t* __restrict__ input,
                                       scalar_t* __restrict__ output,
                                       size_t numel) {
    // Compute global thread index using 2D block and grid indexing
    int tIdx = threadIdx.x + threadIdx.y * blockDim.x;
    int bIdx = blockIdx.x + blockIdx.y * gridDim.x;
    size_t global_idx = bIdx * (blockDim.x * blockDim.y) + tIdx;
    
    // Total number of threads in the grid
    size_t total_threads = gridDim.x * gridDim.y * blockDim.x * blockDim.y;

    for (size_t i = global_idx; i < numel; i += total_threads) {
        scalar_t x = __ldg(&input[i]);
        scalar_t res = (x > static_cast<scalar_t>(0))
                           ? x
                           : static_cast<scalar_t>(1.67326324235437728481) * (my_exp(x) - static_cast<scalar_t>(1));
        output[i] = static_cast<scalar_t>(1.05070098735548049342) * res;
    }
}

// Host function that prepares the 2D grid and block dimensions and launches the kernel

torch::Tensor selu_forward(torch::Tensor input) {
    TORCH_CHECK(input.is_cuda(), "Input tensor must be a CUDA tensor");

    auto output = torch::empty_like(input);
    size_t numel = input.numel();

    // Define 2D block dimensions
    const int block_dim_x = 32, block_dim_y = 8; // 256 threads per block
    dim3 threads(block_dim_x, block_dim_y);

    // Compute the number of blocks needed given the total number of elements
    int block_size = block_dim_x * block_dim_y;
    int blocks_needed = (numel + block_size - 1) / block_size;

    // Arrange blocks in a 2D grid: use a near-square grid layout
    int grid_dim_x = static_cast<int>(ceil(sqrt((double)blocks_needed)));
    int grid_dim_y = (blocks_needed + grid_dim_x - 1) / grid_dim_x;
    dim3 blocks(grid_dim_x, grid_dim_y);

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "selu_forward_cuda_2d", ([&] {
        const scalar_t* input_ptr = input.data_ptr<scalar_t>();
        scalar_t* output_ptr = output.data_ptr<scalar_t>();
        selu_kernel_2d_indexed<scalar_t><<<blocks, threads>>>(input_ptr, output_ptr, numel);
    }));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &selu_forward, "SELU Activation Forward with 2D Thread Indexing (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.118 inst/cycle 0.001 5
Executed Ipc Elapsed 0.472 inst/cycle 0.000 5
Issue Slots Busy 30.654 % 0.438 5
Issued Ipc Active 1.224 inst/cycle 0.001 5
SM Busy 30.654 % 0.438 5
Memory Throughput 278538036683.600 byte/second 4457596902183544320.000 5
Mem Busy 13.210 % 0.011 5
Max Bandwidth 12.262 % 0.014 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 66.236 % 0.050 5
Mem Pipes Busy 9.460 % 0.009 5
Warp Cycles Per Issued Instruction 39.554 cycle 0.480 5
Warp Cycles Per Executed Instruction 43.358 cycle 0.579 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.150 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 76.890 % 0.170 5
Achieved Active Warps Per SM 49.210 warp 0.070 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (76.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 388468.79 μs
Device Time 40.06 μs
Self CPU Time 35.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 388433.32 μs
Device Time 40.06 μs
Self CPU Time 94.04 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 407415.14 μs
Device Time 0.00 μs
Self CPU Time 19437.55 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 381748.52 μs
Device Time 0.00 μs
Self CPU Time 381748.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 510160.31 μs
Device Time 22963.17 μs
Self CPU Time 510160.31 μs
Self Device Time 22963.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void selu_kernel_2d_indexed<float>(float const*, float*, unsigned long)
CPU Time 0.00 μs
Device Time 33562.69 μs
Self CPU Time 0.00 μs
Self Device Time 33562.69 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 24531.64 μs
Device Time 44272.12 μs
Self CPU Time 24531.64 μs
Self Device Time 44272.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 65933.08 μs
Device Time 655884.49 μs
Self CPU Time 13943.28 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 51993.67 μs
Device Time 655884.49 μs
Self CPU Time 15527.72 μs
Self Device Time 655884.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 655884.49 μs
Self CPU Time 0.00 μs
Self Device Time 655884.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45281 warnings generated when compiling for host.
Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:28:16 bugprone-narrowing-conversions
28 | int tIdx = threadIdx.x + threadIdx.y * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:29:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int bIdx = blockIdx.x + blockIdx.y * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:33:28: warning: performing an implicit widening conversion to type 'size_t' (aka 'unsigned long') of a multiplication performed in type 'unsigned int' [bugprone-implicit-widening-of-multiplication-result]
33 | size_t total_threads = gridDim.x * gridDim.y * blockDim.x * blockDim.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:33:28: note: make conversion explicit to silence this warning
5 | size_t total_threads = gridDim.x * gridDim.y * blockDim.x * blockDim.y;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<size_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:33:28: note: perform multiplication in a wider type
33 | size_t total_threads = gridDim.x * gridDim.y * blockDim.x * blockDim.y;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<size_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:58:25: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | int blocks_needed = (numel + block_size - 1) / block_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_27/b3_s1_selu_2d_indexing/base/base.cu:65:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
65 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "selu_forward_cuda_2d", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^