import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor, alpha: float) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
alpha (float): The alpha parameter for the ELU function.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return F.elu(x, alpha=alpha)
class Model(nn.Module):
"""
Simple model that performs an ELU activation.
"""
def __init__(self, alpha):
"""
Initializes the ELU model.
Args:
alpha (float): The alpha parameter for the ELU function.
"""
super(Model, self).__init__()
self.alpha = alpha
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return fn(x, self.alpha)
batch_size = 16
dim = 16384
alpha = 1.0
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [alpha]
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Simple model that performs an ELU activation.
"""
def __init__(self, alpha: float = 1.0):
"""
Initializes the ELU model.
Args:
alpha (float, optional): The alpha parameter for the ELU function. Defaults to 1.0.
"""
super(Model, self).__init__()
self.alpha = alpha
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return F.elu(x, alpha=self.alpha)
batch_size = 16
dim = 16384
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [1.0] # Provide alpha value for initialization
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
// Macros to check tensor properties
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
// Hybrid kernel: Use vectorized loads (float4) for the bulk of the data and
// shared memory to handle any tail (non-multiple-of-4) elements in a coalesced way.
__global__ void elu_kernel_hybrid(const float* __restrict__ x,
float* __restrict__ out,
float alpha,
int n, // total number of elements
int n4) // number of float4 elements in the bulk
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// ----- Process main, vectorized part -----
// Each thread works on 4 elements at a time using float4 if in bounds
if (tid < n4) {
const float4* x4 = reinterpret_cast<const float4*>(x);
float4* out4 = reinterpret_cast<float4*>(out);
float4 in_val = x4[tid];
float4 res;
res.x = (in_val.x > 0.f) ? in_val.x : alpha * (expf(in_val.x) - 1.f);
res.y = (in_val.y > 0.f) ? in_val.y : alpha * (expf(in_val.y) - 1.f);
res.z = (in_val.z > 0.f) ? in_val.z : alpha * (expf(in_val.z) - 1.f);
res.w = (in_val.w > 0.f) ? in_val.w : alpha * (expf(in_val.w) - 1.f);
out4[tid] = res;
}
// ----- Process tail elements -----
// If n is not a multiple of 4, handle the remaining elements using shared memory
int tail_start = n4 * 4; // starting index for tail elements
int total_threads = gridDim.x * blockDim.x;
// Declare shared memory buffer. Each block allocates blockDim.x floats.
extern __shared__ float tile[];
// Use a grid-stride loop over the tail portion
for (int i = tail_start + tid; i < n; i += total_threads) {
int local_idx = threadIdx.x; // each thread's slot in shared memory
// Load scalar element from global memory into shared memory
// (Even though for one element, using shared memory here mimics kernel1's approach
// for coalesced memory accesses on a tile—even for tail elements.)
tile[local_idx] = x[i];
__syncthreads();
// Perform the ELU activation
float val = tile[local_idx];
float result = (val > 0.f) ? val : alpha * (expf(val) - 1.f);
__syncthreads();
// Write the result back to global memory
out[i] = result;
__syncthreads(); // Ensure that shared memory is ready for next iteration
}
}
// Interface function called from Python
torch::Tensor elu_cuda_hybrid(torch::Tensor x, float alpha) {
CHECK_INPUT(x);
auto out = torch::empty_like(x);
int n = x.numel();
// Calculate the number of complete float4 groups
int n4 = n / 4; // main vectorized part covers n4 * 4 elements
// Determine tail count (n % 4)
int tail_count = n - n4 * 4;
// Decide grid size: we want to cover both the vectorized and tail parts
// (n4 is typically >> tail_count, so using n4 works in most cases)
int thread_needed = (n4 > tail_count ? n4 : tail_count);
const int threads = 256;
int blocks = (thread_needed + threads - 1) / threads;
// Allocate shared memory per block for tail processing
size_t sharedMemSize = threads * sizeof(float);
elu_kernel_hybrid<<<blocks, threads, sharedMemSize>>>(
x.data_ptr<float>(),
out.data_ptr<float>(),
alpha,
n,
n4
);
return out;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &elu_cuda_hybrid, "Hybrid ELU Activation with vectorized load and shared memory tail handling (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.320 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.128 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 9.374 | % | 0.003 | 5 |
Issued Ipc Active | 0.374 | inst/cycle | 0.000 | 5 |
SM Busy | 9.374 | % | 0.003 | 5 |
Memory Throughput | 283506633768.476 | byte/second | 16369674480749002752.000 | 5 |
Mem Busy | 13.472 | % | 0.027 | 5 |
Max Bandwidth | 12.374 | % | 0.029 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 67.066 | % | 0.097 | 5 |
Mem Pipes Busy | 5.250 | % | 0.006 | 5 |
Warp Cycles Per Issued Instruction | 36.476 | cycle | 0.422 | 5 |
Warp Cycles Per Executed Instruction | 43.050 | cycle | 0.590 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 24.510 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 10.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 16.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 21.474 | % | 0.019 | 5 |
Achieved Active Warps Per SM | 13.746 | warp | 0.008 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (21.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 469607.63 | μs |
Device Time | 40.19 | μs |
Self CPU Time | 36.41 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 469571.22 | μs |
Device Time | 40.19 | μs |
Self CPU Time | 83.64 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 488896.46 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 19773.43 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 468643.34 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 468643.34 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 486043.07 | μs |
Device Time | 22481.89 | μs |
Self CPU Time | 486043.07 | μs |
Self Device Time | 22481.89 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
elu_kernel_hybrid(float const*, float*, float, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 24671.23 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 24671.23 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 24200.21 | μs |
Device Time | 43269.32 | μs |
Self CPU Time | 24200.21 | μs |
Self Device Time | 43269.32 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 64921.60 | μs |
Device Time | 641573.22 | μs |
Self CPU Time | 13164.48 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 51759.04 | μs |
Device Time | 641573.22 | μs |
Self CPU Time | 15656.53 | μs |
Self Device Time | 641573.22 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 641573.22 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 641573.22 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45283 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.