import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor, alpha: float) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
alpha (float): The alpha parameter for the ELU function.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return F.elu(x, alpha=alpha)
class Model(nn.Module):
"""
Simple model that performs an ELU activation.
"""
def __init__(self, alpha):
"""
Initializes the ELU model.
Args:
alpha (float): The alpha parameter for the ELU function.
"""
super(Model, self).__init__()
self.alpha = alpha
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return fn(x, self.alpha)
batch_size = 16
dim = 16384
alpha = 1.0
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [alpha]
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Simple model that performs an ELU activation.
"""
def __init__(self, alpha: float = 1.0):
"""
Initializes the ELU model.
Args:
alpha (float, optional): The alpha parameter for the ELU function. Defaults to 1.0.
"""
super(Model, self).__init__()
self.alpha = alpha
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies ELU activation to the input tensor.
Args:
x (torch.Tensor): Input tensor of any shape.
Returns:
torch.Tensor: Output tensor with ELU applied, same shape as input.
"""
return F.elu(x, alpha=self.alpha)
batch_size = 16
dim = 16384
def get_inputs():
x = torch.randn(batch_size, dim)
return [x]
def get_init_inputs():
return [1.0] # Provide alpha value for initialization
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
// This kernel uses vectorized loads (float4) and manually unrolls the computation
// for each of the four elements, reducing loop overhead on the critical path.
// It also unrolls the tail loop using a pragma unroll to minimize branch overhead.
template <typename scalar_t>
__global__ void elu_unroll_kernel(const scalar_t* __restrict__ x,
scalar_t* __restrict__ out,
float alpha,
int n) {
// Each thread processes 4 elements at a time
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// Base index for this thread (processing groups of 4 elements)
int base = tid * 4;
// Total stride in terms of elements
int stride = gridDim.x * blockDim.x * 4;
// Loop over the input with manual unrolling
#pragma unroll
for (int i = base; i < n; i += stride) {
int remaining = n - i;
if (remaining >= 4) {
// Use vectorized load
float4 vec = *reinterpret_cast<const float4*>(x + i);
// Manually unroll the ELU computation for each element
float r0 = (vec.x > 0.f) ? vec.x : alpha * (expf(vec.x) - 1.f);
float r1 = (vec.y > 0.f) ? vec.y : alpha * (expf(vec.y) - 1.f);
float r2 = (vec.z > 0.f) ? vec.z : alpha * (expf(vec.z) - 1.f);
float r3 = (vec.w > 0.f) ? vec.w : alpha * (expf(vec.w) - 1.f);
float4 res = make_float4(r0, r1, r2, r3);
*reinterpret_cast<float4*>(out + i) = res;
} else {
// Handle the tail elements with a manually unrolled loop
#pragma unroll
for (int j = 0; j < 4; j++) {
if (j < remaining) {
float val = x[i + j];
out[i + j] = (val > 0.f) ? val : alpha * (expf(val) - 1.f);
}
}
}
}
}
// CUDA wrapper function
torch::Tensor elu_unroll_cuda(torch::Tensor x, float alpha) {
CHECK_INPUT(x);
auto out = torch::empty_like(x);
const int n = x.numel();
// Calculate number of vectorized (float4) operations
int vec_ops = (n + 3) / 4;
const int threads = 512;
const int blocks = (vec_ops + threads - 1) / threads;
elu_unroll_kernel<float><<<blocks, threads>>>(x.data_ptr<float>(), out.data_ptr<float>(), alpha, n);
return out;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &elu_unroll_cuda, "Vectorized and unrolled ELU activation (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.462 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.180 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 12.644 | % | 0.009 | 5 |
Issued Ipc Active | 0.506 | inst/cycle | 0.000 | 5 |
SM Busy | 12.644 | % | 0.009 | 5 |
Memory Throughput | 276035665462.630 | byte/second | 13374225478973550592.000 | 5 |
Mem Busy | 13.134 | % | 0.032 | 5 |
Max Bandwidth | 12.054 | % | 0.035 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 67.304 | % | 0.028 | 5 |
Mem Pipes Busy | 6.256 | % | 0.009 | 5 |
Warp Cycles Per Issued Instruction | 28.494 | cycle | 2.884 | 5 |
Warp Cycles Per Executed Instruction | 31.186 | cycle | 3.453 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 26.520 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 4.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 16.000 | block | 0.000 | 5 |
Block Limit Warps | 4.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 21.938 | % | 0.006 | 5 |
Achieved Active Warps Per SM | 14.042 | warp | 0.002 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (22.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 468406.02 | μs |
Device Time | 41.57 | μs |
Self CPU Time | 46.02 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 468360.00 | μs |
Device Time | 41.57 | μs |
Self CPU Time | 108.13 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 487211.75 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 19342.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 467672.80 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 467672.80 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 464852.93 | μs |
Device Time | 21392.84 | μs |
Self CPU Time | 464852.93 | μs |
Self Device Time | 21392.84 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void elu_unroll_kernel<float>(float const*, float*, float, int) | ||
CPU Time | 0.00 | μs |
Device Time | 30896.71 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 30896.71 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 21438.22 | μs |
Device Time | 41147.37 | μs |
Self CPU Time | 21438.22 | μs |
Self Device Time | 41147.37 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 64191.57 | μs |
Device Time | 609333.58 | μs |
Self CPU Time | 12015.70 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 52181.60 | μs |
Device Time | 609333.58 | μs |
Self CPU Time | 17150.38 | μs |
Self Device Time | 609333.58 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 609333.58 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 609333.58 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45282 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.