import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
kernel_size: int,
stride: int,
padding: int,
dilation: int,
return_indices: bool,
) -> torch.Tensor:
"""
Functional implementation of Max Pooling 1D.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
kernel_size (int): Size of the window to take a max over.
stride (int): Stride of the window.
padding (int): Implicit zero padding to be added on both sides.
dilation (int): Spacing between kernel elements.
return_indices (bool): Whether to return the indices of the maximum values.
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied.
"""
return F.max_pool1d(
x,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
return_indices=return_indices,
)
class Model(nn.Module):
"""
Simple model that performs Max Pooling 1D.
"""
def __init__(
self,
kernel_size: int,
stride: int,
padding: int,
dilation: int,
return_indices: bool,
):
"""
Initializes the Max Pooling 1D layer.
Args:
kernel_size (int): Size of the window to take a max over.
stride (int): Stride of the window.
padding (int): Implicit zero padding to be added on both sides.
dilation (int): Spacing between kernel elements.
return_indices (bool): Whether to return the indices of the maximum values.
"""
super(Model, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.return_indices = return_indices
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies Max Pooling 1D to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
fn: Function to apply (defaults to module_fn)
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied.
"""
return fn(
x,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
self.return_indices,
)
batch_size = 16
features = 64
sequence_length = 128
kernel_size = 4
stride = 2
padding = 2
dilation = 3
return_indices = False
def get_inputs():
x = torch.randn(batch_size, features, sequence_length)
return [x]
def get_init_inputs():
return [kernel_size, stride, padding, dilation, return_indices]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs Max Pooling 1D.
"""
def __init__(self, kernel_size: int, stride: int = None, padding: int = 0, dilation: int = 1, return_indices: bool = False):
"""
Initializes the Max Pooling 1D layer.
Args:
kernel_size (int): Size of the window to take a max over.
stride (int, optional): Stride of the window. Defaults to None (same as kernel_size).
padding (int, optional): Implicit zero padding to be added on both sides. Defaults to 0.
dilation (int, optional): Spacing between kernel elements. Defaults to 1.
return_indices (bool, optional): Whether to return the indices of the maximum values. Defaults to False.
"""
super(Model, self).__init__()
self.maxpool = nn.MaxPool1d(kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, return_indices=return_indices)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies Max Pooling 1D to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied, shape (batch_size, num_features, output_sequence_length).
"""
return self.maxpool(x)
batch_size = 16
features = 64
sequence_length = 128
kernel_size = 4
stride = 2
padding = 2
dilation = 3
return_indices = False
def get_inputs():
x = torch.randn(batch_size, features, sequence_length)
return [x]
def get_init_inputs():
return [kernel_size, stride, padding, dilation, return_indices]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
// CUDA kernel with balanced workload distribution
__global__ void max_pool1d_kernel_balanced(
const float* __restrict__ input,
float* __restrict__ output,
int64_t* __restrict__ indices,
const int batch_size,
const int num_channels,
const int input_length,
const int kernel_size,
const int stride,
const int padding,
const int dilation,
const int output_length,
const bool return_indices) {
const int b = blockIdx.z;
const int c = blockIdx.y;
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if (b >= batch_size || c >= num_channels || i >= output_length) return;
const int input_start = i * stride - padding;
float max_val = -INFINITY;
int max_idx = -1;
for (int k = 0; k < kernel_size; ++k) {
const int pos = input_start + k * dilation;
if (pos >= 0 && pos < input_length) {
const float val = input[b * num_channels * input_length + c * input_length + pos];
if (val > max_val) {
max_val = val;
max_idx = pos;
}
}
}
const int out_idx = b * num_channels * output_length + c * output_length + i;
output[out_idx] = max_val;
if (return_indices) indices[out_idx] = max_idx;
}
// Host function to launch the CUDA kernel
torch::Tensor forward(
torch::Tensor x,
int64_t kernel_size,
int64_t stride,
int64_t padding,
int64_t dilation,
bool return_indices) {
TORCH_CHECK(x.dim() == 3, "Input must be 3D");
TORCH_CHECK(x.is_cuda(), "Input must be on CUDA");
TORCH_CHECK(x.is_contiguous(), "Input must be contiguous");
const int batch_size = x.size(0);
const int num_channels = x.size(1);
const int input_length = x.size(2);
const int output_length = ((input_length + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
TORCH_CHECK(output_length > 0, "Output length must be positive");
auto options = torch::TensorOptions().dtype(x.dtype()).device(x.device());
auto output = torch::empty({batch_size, num_channels, output_length}, options);
torch::Tensor indices;
if (return_indices) {
indices = torch::empty({batch_size, num_channels, output_length},
torch::TensorOptions().dtype(torch::kInt64).device(x.device()));
}
const int block_size = 256;
const dim3 threads(block_size);
const dim3 blocks((output_length + block_size - 1) / block_size, num_channels, batch_size);
max_pool1d_kernel_balanced<<<blocks, threads>>>(
x.data_ptr<float>(),
output.data_ptr<float>(),
return_indices ? indices.data_ptr<int64_t>() : nullptr,
batch_size,
num_channels,
input_length,
kernel_size,
stride,
padding,
dilation,
output_length,
return_indices
);
return return_indices ? torch::cat({output, indices}, -1) : output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "MaxPool1D forward with balanced workload distribution (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.924 | inst/cycle | 0.001 | 5 |
Executed Ipc Elapsed | 0.340 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 23.934 | % | 0.660 | 5 |
Issued Ipc Active | 0.956 | inst/cycle | 0.001 | 5 |
SM Busy | 23.934 | % | 0.660 | 5 |
Memory Throughput | 140004022121.668 | byte/second | 563161743537796096.000 | 5 |
Mem Busy | 10.822 | % | 0.002 | 5 |
Max Bandwidth | 7.552 | % | 0.002 | 5 |
L1/TEX Hit Rate | 69.070 | % | 0.001 | 5 |
L2 Hit Rate | 72.342 | % | 0.008 | 5 |
Mem Pipes Busy | 16.128 | % | 0.015 | 5 |
Warp Cycles Per Issued Instruction | 30.456 | cycle | 0.023 | 5 |
Warp Cycles Per Executed Instruction | 31.550 | cycle | 0.019 | 5 |
Avg. Active Threads Per Warp | 31.400 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 29.920 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 47.776 | % | 2.801 | 5 |
Achieved Active Warps Per SM | 30.578 | warp | 1.147 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (47.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 621201.95 | μs |
Device Time | 21.34 | μs |
Self CPU Time | 41.95 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 621160.00 | μs |
Device Time | 21.34 | μs |
Self CPU Time | 108.89 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 620858.06 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 99.82 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 613752.93 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 613752.93 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 390045.73 | μs |
Device Time | 17061.98 | μs |
Self CPU Time | 390045.73 | μs |
Self Device Time | 17061.98 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
max_pool1d_kernel_balanced(float const*, float*, long*, int, int, int, int, int, int, int, int, bool) | ||
CPU Time | 0.00 | μs |
Device Time | 23753.09 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 23753.09 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 18062.72 | μs |
Device Time | 33891.51 | μs |
Self CPU Time | 18062.72 | μs |
Self Device Time | 33891.51 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 60033.52 | μs |
Device Time | 509522.39 | μs |
Self CPU Time | 12010.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 48025.12 | μs |
Device Time | 509522.39 | μs |
Self CPU Time | 13606.06 | μs |
Self Device Time | 509522.39 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 509600.08 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 509600.08 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45293 warnings generated when compiling for host. Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.