import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
kernel_size: int,
stride: int,
padding: int,
dilation: int,
return_indices: bool,
) -> torch.Tensor:
"""
Functional implementation of Max Pooling 1D.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
kernel_size (int): Size of the window to take a max over.
stride (int): Stride of the window.
padding (int): Implicit zero padding to be added on both sides.
dilation (int): Spacing between kernel elements.
return_indices (bool): Whether to return the indices of the maximum values.
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied.
"""
return F.max_pool1d(
x,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
return_indices=return_indices,
)
class Model(nn.Module):
"""
Simple model that performs Max Pooling 1D.
"""
def __init__(
self,
kernel_size: int,
stride: int,
padding: int,
dilation: int,
return_indices: bool,
):
"""
Initializes the Max Pooling 1D layer.
Args:
kernel_size (int): Size of the window to take a max over.
stride (int): Stride of the window.
padding (int): Implicit zero padding to be added on both sides.
dilation (int): Spacing between kernel elements.
return_indices (bool): Whether to return the indices of the maximum values.
"""
super(Model, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.return_indices = return_indices
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies Max Pooling 1D to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
fn: Function to apply (defaults to module_fn)
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied.
"""
return fn(
x,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
self.return_indices,
)
batch_size = 16
features = 64
sequence_length = 128
kernel_size = 4
stride = 2
padding = 2
dilation = 3
return_indices = False
def get_inputs():
x = torch.randn(batch_size, features, sequence_length)
return [x]
def get_init_inputs():
return [kernel_size, stride, padding, dilation, return_indices]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs Max Pooling 1D.
"""
def __init__(self, kernel_size: int, stride: int = None, padding: int = 0, dilation: int = 1, return_indices: bool = False):
"""
Initializes the Max Pooling 1D layer.
Args:
kernel_size (int): Size of the window to take a max over.
stride (int, optional): Stride of the window. Defaults to None (same as kernel_size).
padding (int, optional): Implicit zero padding to be added on both sides. Defaults to 0.
dilation (int, optional): Spacing between kernel elements. Defaults to 1.
return_indices (bool, optional): Whether to return the indices of the maximum values. Defaults to False.
"""
super(Model, self).__init__()
self.maxpool = nn.MaxPool1d(kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, return_indices=return_indices)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies Max Pooling 1D to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, num_features, sequence_length).
Returns:
torch.Tensor: Output tensor with Max Pooling 1D applied, shape (batch_size, num_features, output_sequence_length).
"""
return self.maxpool(x)
batch_size = 16
features = 64
sequence_length = 128
kernel_size = 4
stride = 2
padding = 2
dilation = 3
return_indices = False
def get_inputs():
x = torch.randn(batch_size, features, sequence_length)
return [x]
def get_init_inputs():
return [kernel_size, stride, padding, dilation, return_indices]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
__global__ void max_pool1d_coalesced_kernel(
const float* __restrict__ input,
float* __restrict__ output,
int64_t* __restrict__ indices,
const int batch_size,
const int num_channels,
const int input_length,
const int kernel_size,
const int stride,
const int padding,
const int dilation,
const int output_length,
bool return_indices)
{
const int elements_per_bc = output_length;
const int total_elements = batch_size * num_channels * output_length;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= total_elements) return;
const int bc = tid / elements_per_bc;
const int i = tid % elements_per_bc;
const int b = bc / num_channels;
const int c = bc % num_channels;
if (b >= batch_size || c >= num_channels) return;
const int input_start = i * stride - padding;
float max_val = -INFINITY;
int max_idx = -1;
for (int k = 0; k < kernel_size; ++k) {
const int pos = input_start + k * dilation;
if (pos >= 0 && pos < input_length) {
const float val = input[b * num_channels * input_length + c * input_length + pos];
if (val > max_val) {
max_val = val;
max_idx = pos;
}
}
}
const int out_idx = b * num_channels * output_length + c * output_length + i;
output[out_idx] = max_val;
if (return_indices) indices[out_idx] = max_idx;
}
torch::Tensor forward(
torch::Tensor x,
int64_t kernel_size,
int64_t stride,
int64_t padding,
int64_t dilation,
bool return_indices)
{
TORCH_CHECK(x.dim() == 3, "Input must be 3D");
TORCH_CHECK(x.is_cuda(), "Input must be on CUDA");
TORCH_CHECK(x.is_contiguous(), "Input must be contiguous");
const int batch_size = x.size(0);
const int num_channels = x.size(1);
const int input_length = x.size(2);
const int output_length = ((input_length + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
TORCH_CHECK(output_length > 0, "Output length must be positive");
auto options = torch::TensorOptions().dtype(x.dtype()).device(x.device());
auto output = torch::empty({batch_size, num_channels, output_length}, options);
torch::Tensor indices;
if (return_indices) {
indices = torch::empty({batch_size, num_channels, output_length},
options.dtype(torch::kInt64));
}
const int total_elements = batch_size * num_channels * output_length;
const int threads_per_block = 512;
const int num_blocks = (total_elements + threads_per_block - 1) / threads_per_block;
max_pool1d_coalesced_kernel<<<num_blocks, threads_per_block>>>(
x.data_ptr<float>(),
output.data_ptr<float>(),
return_indices ? indices.data_ptr<int64_t>() : nullptr,
batch_size,
num_channels,
input_length,
kernel_size,
stride,
padding,
dilation,
output_length,
return_indices
);
return return_indices ? torch::cat({output, indices}, -1) : output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "MaxPool1D forward with coalesced writes (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 1.010 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.366 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 26.158 | % | 0.047 | 5 |
Issued Ipc Active | 1.046 | inst/cycle | 0.000 | 5 |
SM Busy | 26.158 | % | 0.047 | 5 |
Memory Throughput | 140301031991.718 | byte/second | 9623026690739449856.000 | 5 |
Mem Busy | 10.610 | % | 0.046 | 5 |
Max Bandwidth | 6.932 | % | 0.021 | 5 |
L1/TEX Hit Rate | 69.000 | % | 0.000 | 5 |
L2 Hit Rate | 72.376 | % | 0.031 | 5 |
Mem Pipes Busy | 7.076 | % | 0.024 | 5 |
Warp Cycles Per Issued Instruction | 14.454 | cycle | 0.131 | 5 |
Warp Cycles Per Executed Instruction | 14.994 | cycle | 0.146 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 28.210 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 4.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 16.000 | block | 0.000 | 5 |
Block Limit Warps | 4.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 23.528 | % | 0.007 | 5 |
Achieved Active Warps Per SM | 15.058 | warp | 0.003 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (23.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 358144.05 | μs |
Device Time | 21.09 | μs |
Self CPU Time | 35.43 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 358108.62 | μs |
Device Time | 21.09 | μs |
Self CPU Time | 86.50 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 357873.45 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 68.36 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 357625.42 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 357625.42 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 497699.77 | μs |
Device Time | 23202.98 | μs |
Self CPU Time | 497699.77 | μs |
Self Device Time | 23202.98 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
max_pool1d_coalesced_kernel(float const*, float*, long*, int, int, int, int, int, int, int, int, bool) | ||
CPU Time | 0.00 | μs |
Device Time | 30344.86 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 30344.86 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 19613.20 | μs |
Device Time | 43015.36 | μs |
Self CPU Time | 19613.20 | μs |
Self Device Time | 43015.36 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 66297.60 | μs |
Device Time | 641887.57 | μs |
Self CPU Time | 16299.02 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 49999.77 | μs |
Device Time | 641887.57 | μs |
Self CPU Time | 16321.79 | μs |
Self Device Time | 641887.57 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 641887.57 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 641887.57 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45291 warnings generated when compiling for host. Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.