← Back to Leaderboard

The AI CUDA Engineer 👷

51_Argmax_over_a_dimensionefficient_argmax_base

Level 1 • Task 51
import torch
import torch.nn as nn
import torch.functional as F


def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Applies argmax over the specified dimension to the input tensor.

    Args:
        x (torch.Tensor): Input tensor
        dim (int): Dimension to perform argmax over

    Returns:
        torch.Tensor: Output tensor with argmax applied over specified dimension
    """
    return torch.argmax(x, dim)


class Model(nn.Module):
    """
    Simple model that performs Argmax over a specified dimension.
    """

    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to perform argmax.

        Args:
            dim (int): The dimension to perform argmax over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies argmax over the specified dimension to the input tensor.

        Args:
            x (torch.Tensor): Input tensor
            fn: Function to apply (defaults to module_fn)

        Returns:
            torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
        """
        return fn(x, self.dim)


batch_size = 16
dim1 = 256
dim2 = 256


def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]


def get_init_inputs():
    return [1]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Simple model that performs Argmax over a specified dimension.
    """

    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to perform argmax.

        Args:
            dim (int): The dimension to perform argmax over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies argmax over the specified dimension to the input tensor.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
        """
        return torch.argmax(x, dim=self.dim)


batch_size = 16
dim1 = 256
dim2 = 256


def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]


def get_init_inputs():
    return [1]

Kernel Information

Related Kernels (Level 1, Task 51 • 51_Argmax_over_a_dimension)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_argmax_nosm_edit_1 0.01 1.85 2.54
🥈 warp_level_argmax_base 0.01 1.72 2.36
🥈 warp_level_argmax_edit_1 0.01 1.72 2.36
🥈 efficient_argmax_base 0.01 1.72 2.36
🥈 stride_loop_argmax_stride_base 0.01 1.72 2.36
🥈 stride_loop_argmax_final_edit_1 0.01 1.72 2.36
🥈 argmax_coop_red_tuned_base 0.01 1.72 2.36
🥈 argmax_coop_red_tuned_edit_1 0.01 1.72 2.36
🥈 divergence_free_argmax_base 0.01 1.72 2.36
🥈 optimized_argmax_combination_base 0.01 1.72 2.36
🥈 argmax_ldg_128_opt_base 0.01 1.72 2.36
🥈 argmax_ldg_128_opt_edit_1 0.01 1.72 2.36
🥈 argmax_coop_red_sync_opt_base 0.01 1.72 2.36
🥈 argmax_aligned_mem_base_edit_1 0.01 1.72 2.36
🥈 stride_loop_argmax_final_base 0.01 1.72 2.36
🥈 warp_argmax_nosm_base 0.01 1.72 2.36
17 stride_loop_argmax_base 0.01 1.61 2.20
17 loop_unrolled_argmax_edit_1 0.01 1.61 2.20
17 stride_loop_argmax_edit_1 0.01 1.61 2.20
17 optimized_argmax_kernel_base 0.01 1.61 2.20
#include <torch/extension.h>
#include <vector>
#include <cfloat>

// Optimized kernel using warp-level primitives for efficient reduction
__global__ void efficient_argmax_kernel(
    const float* __restrict__ x,
    int64_t* __restrict__ indices,
    const int dimSize,
    const int innerSize) {

    // Each block computes one output element corresponding to an (outer, inner) pair.
    int global_idx = blockIdx.x;
    int outer_idx = global_idx / innerSize;
    int inner_idx = global_idx % innerSize;
    int base_offset = outer_idx * dimSize * innerSize + inner_idx;

    // Each thread computes a local maximum in the reduction dimension
    float local_max = -FLT_MAX;
    int local_idx = 0;
    for (int i = threadIdx.x; i < dimSize; i += blockDim.x) {
        float val = x[base_offset + i * innerSize];
        if (val > local_max) {
            local_max = val;
            local_idx = i;
        }
    }

    // Warp-level reduction using shuffle intrinsics
    // All threads in a warp reduce their values without shared memory
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        float other_max = __shfl_down_sync(0xFFFFFFFF, local_max, offset);
        int other_idx = __shfl_down_sync(0xFFFFFFFF, local_idx, offset);
        if (other_max > local_max) {
            local_max = other_max;
            local_idx = other_idx;
        }
    }

    // Use shared memory to reduce across warps
    // Assuming maximum of 1024 threads per block => max 32 warps
    __shared__ float sdata[32];
    __shared__ int sidx[32];

    int lane = threadIdx.x % warpSize;
    int warpId = threadIdx.x / warpSize;

    // First thread of each warp writes its result to shared memory
    if (lane == 0) {
        sdata[warpId] = local_max;
        sidx[warpId] = local_idx;
    }
    __syncthreads();

    // Final reduction: only the first warp participates
    if (threadIdx.x < blockDim.x / warpSize) {
        local_max = sdata[lane];
        local_idx = sidx[lane];
        for (int offset = (blockDim.x / warpSize) / 2; offset > 0; offset /= 2) {
            float other_max = __shfl_down_sync(0xFFFFFFFF, local_max, offset);
            int other_idx = __shfl_down_sync(0xFFFFFFFF, local_idx, offset);
            if (other_max > local_max) {
                local_max = other_max;
                local_idx = other_idx;
            }
        }
        if (lane == 0) {
            indices[global_idx] = local_idx;
        }
    }
}

// Host function to launch the efficient argmax kernel

torch::Tensor efficient_argmax_forward_cuda(const torch::Tensor& x, const int64_t dim) {
    TORCH_CHECK(x.scalar_type() == at::kFloat, "Only float32 is supported.");
    auto x_contig = x.contiguous();
    auto sizes = x_contig.sizes();
    int ndim = x_contig.dim();
    TORCH_CHECK(dim >= 0 && dim < ndim, "Invalid dim for argmax.");

    // Compute sizes for outer, dim, and inner dimensions
    int outerSize = 1;
    for (int d = 0; d < dim; d++) {
        outerSize *= sizes[d];
    }
    int dimSize = sizes[dim];
    int innerSize = 1;
    for (int d = dim + 1; d < ndim; d++) {
        innerSize *= sizes[d];
    }

    // Prepare output shape: remove the reduced dimension
    std::vector<int64_t> out_sizes;
    for (int d = 0; d < ndim; d++) {
        if (d == dim) continue;
        out_sizes.push_back(sizes[d]);
    }
    auto options = torch::TensorOptions().device(x.device()).dtype(torch::kLong);
    auto indices = torch::empty(out_sizes, options);

    int total_outputs = outerSize * innerSize;
    int blockSize = 128;  // Chosen to cover reduction dimension; can be tuned for specific scenarios
    dim3 grid(total_outputs);
    dim3 block(blockSize);

    // Launch the kernel. No dynamic shared memory is used because warp reduction minimizes it.
    efficient_argmax_kernel<<<grid, block>>>(
        x_contig.data_ptr<float>(),
        indices.data_ptr<int64_t>(),
        dimSize,
        innerSize
    );

    return indices;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &efficient_argmax_forward_cuda, "Efficient ArgMax CUDA forward with warp-level reduction");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.402 inst/cycle 0.000 5
Executed Ipc Elapsed 1.116 inst/cycle 0.000 5
Issue Slots Busy 35.744 % 0.242 5
Issued Ipc Active 1.430 inst/cycle 0.000 5
SM Busy 35.744 % 0.242 5
Memory Throughput 363062120088.258 byte/second 1060581302856603264.000 5
Mem Busy 62.866 % 0.689 5
Max Bandwidth 28.590 % 0.072 5
L1/TEX Hit Rate 1.022 % 0.057 5
L2 Hit Rate 84.784 % 0.884 5
Mem Pipes Busy 12.202 % 0.001 5
Warp Cycles Per Issued Instruction 36.244 cycle 0.023 5
Warp Cycles Per Executed Instruction 36.982 cycle 0.024 5
Avg. Active Threads Per Warp 28.240 0.000 5
Avg. Not Predicated Off Threads Per Warp 26.060 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 32.000 block 0.000 5
Block Limit Shared Mem 51.000 block 0.000 5
Block Limit Warps 16.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 82.258 % 0.149 5
Achieved Active Warps Per SM 52.644 warp 0.061 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (29.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (82.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 441142.57 μs
Device Time 367.48 μs
Self CPU Time 34.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 441108.36 μs
Device Time 367.48 μs
Self CPU Time 77.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 440443.86 μs
Device Time 0.00 μs
Self CPU Time 76.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 440172.50 μs
Device Time 0.00 μs
Self CPU Time 440172.50 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 562431.41 μs
Device Time 21811.28 μs
Self CPU Time 562431.41 μs
Self Device Time 21811.28 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
efficient_argmax_kernel(float const*, long*, int, int)
CPU Time 0.00 μs
Device Time 85837.62 μs
Self CPU Time 0.00 μs
Self Device Time 85837.62 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 23975.57 μs
Device Time 43274.96 μs
Self CPU Time 23975.57 μs
Self Device Time 43274.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 71833.70 μs
Device Time 647267.49 μs
Self CPU Time 15942.62 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 55893.19 μs
Device Time 647267.49 μs
Self CPU Time 16065.83 μs
Self Device Time 647267.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 647346.33 μs
Self CPU Time 0.00 μs
Self Device Time 647346.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45286 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:13:22 bugprone-narrowing-conversions
13 | int global_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:21:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | for (int i = threadIdx.x; i < dimSize; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:21:49: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | for (int i = threadIdx.x; i < dimSize; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:45:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | int lane = threadIdx.x % warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:46:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | int warpId = threadIdx.x / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:59:27: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | for (int offset = (blockDim.x / warpSize) / 2; offset > 0; offset /= 2) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:79:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | int ndim = x_contig.dim();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:85:22: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | outerSize *= sizes[d];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:87:19: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | int dimSize = sizes[dim];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:89:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
89 | for (int d = dim + 1; d < ndim; d++) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_51/b8_s3_efficient_argmax/base/base.cu:90:22: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
90 | innerSize *= sizes[d];
| ^