import torch
import torch.nn as nn
import torch.functional as F
def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor
dim (int): Dimension to perform argmax over
Returns:
torch.Tensor: Output tensor with argmax applied over specified dimension
"""
return torch.argmax(x, dim)
class Model(nn.Module):
"""
Simple model that performs Argmax over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to perform argmax.
Args:
dim (int): The dimension to perform argmax over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor
fn: Function to apply (defaults to module_fn)
Returns:
torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
"""
return fn(x, self.dim)
batch_size = 16
dim1 = 256
dim2 = 256
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [1]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs Argmax over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to perform argmax.
Args:
dim (int): The dimension to perform argmax over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
"""
return torch.argmax(x, dim=self.dim)
batch_size = 16
dim1 = 256
dim2 = 256
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [1]
#include <torch/extension.h>
#include <cuda_runtime.h>
#include <cfloat>
#include <vector>
// This kernel computes argmax over a specified dimension using only warp-level primitives.
// Each block is assigned one (outer, inner) pair and is launched with exactly 32 threads (one warp).
// Each thread processes several elements along the reduction dimension in a stride loop.
// Then, warp-level intrinsic __shfl_down_sync() is used to reduce and determine the maximum value and its index,
// completely avoiding shared memory operations for the reduction phase.
__global__ void warp_argmax_nosm_kernel(
const float* __restrict__ x,
int64_t* __restrict__ indices,
const int outerSize,
const int dimSize,
const int innerSize) {
// Each block handles one (outer, inner) pair
int idx = blockIdx.x;
if (idx >= outerSize * innerSize) return;
int outer_idx = idx / innerSize;
int inner_idx = idx % innerSize;
int start_offset = outer_idx * (dimSize * innerSize) + inner_idx;
// Each thread in the warp computes a partial maximum over the reduction dimension.
// Using a stride loop with a step equal to the warp size.
float thread_max = -FLT_MAX;
int thread_arg = 0;
const int warpSize = 32;
for (int d = threadIdx.x; d < dimSize; d += warpSize) {
// Use __ldg to enable read-only cache and improved performance
float val = __ldg(&x[start_offset + d * innerSize]);
if (val > thread_max) {
thread_max = val;
thread_arg = d;
} else if (val == thread_max && d < thread_arg) {
// Tie-breaker: choose the smaller index
thread_arg = d;
}
}
// Perform warp-level reduction using shuffle intrinsics
unsigned int mask = 0xffffffff; // Full mask for 32 threads
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
float other_max = __shfl_down_sync(mask, thread_max, offset);
int other_arg = __shfl_down_sync(mask, thread_arg, offset);
if (other_max > thread_max) {
thread_max = other_max;
thread_arg = other_arg;
} else if (other_max == thread_max && other_arg < thread_arg) {
thread_arg = other_arg;
}
}
// The first thread in the warp writes the final argmax result
if (threadIdx.x == 0) {
indices[idx] = thread_arg;
}
}
// Host function to launch the CUDA kernel for argmax
// This function computes outerSize, dimSize, and innerSize based on the input tensor dimensions
// and then launches one warp (32 threads) per (outer, inner) pair.
torch::Tensor argmax_forward_cuda(const torch::Tensor& x, const int64_t dim) {
TORCH_CHECK(x.scalar_type() == at::kFloat, "Only float32 is supported.");
auto x_contig = x.contiguous();
auto sizes = x_contig.sizes();
const int ndim = x_contig.dim();
TORCH_CHECK(dim >= 0 && dim < ndim, "Invalid dimension for argmax.");
int outerSize = 1;
for (int i = 0; i < dim; i++) {
outerSize *= sizes[i];
}
int dimSize = sizes[dim];
int innerSize = 1;
for (int i = dim + 1; i < ndim; i++) {
innerSize *= sizes[i];
}
// Build the output shape by removing the reduction dimension
std::vector<int64_t> out_sizes;
for (int i = 0; i < ndim; i++) {
if (i != dim) {
out_sizes.push_back(sizes[i]);
}
}
auto options = torch::TensorOptions().device(x.device()).dtype(torch::kLong);
auto indices = torch::empty(out_sizes, options);
// Each output element corresponds to one outer*inner pair
int total = outerSize * innerSize;
// Launch one warp (32 threads) per output element
const int threads = 32;
const int blocks = total;
warp_argmax_nosm_kernel<<<blocks, threads>>>(
x_contig.data_ptr<float>(),
indices.data_ptr<int64_t>(),
outerSize,
dimSize,
innerSize);
return indices;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &argmax_forward_cuda, "ArgMax CUDA forward (warp-level reduction, no shared memory)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.478 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.358 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 11.936 | % | 0.017 | 5 |
Issued Ipc Active | 0.478 | inst/cycle | 0.000 | 5 |
SM Busy | 13.566 | % | 0.021 | 5 |
Memory Throughput | 383209954448.874 | byte/second | 11889782905367425024.000 | 5 |
Mem Busy | 63.644 | % | 1.140 | 5 |
Max Bandwidth | 31.102 | % | 0.105 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 85.292 | % | 1.129 | 5 |
Mem Pipes Busy | 3.594 | % | 0.001 | 5 |
Warp Cycles Per Issued Instruction | 54.812 | cycle | 0.107 | 5 |
Warp Cycles Per Executed Instruction | 55.036 | cycle | 0.121 | 5 |
Avg. Active Threads Per Warp | 30.430 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 28.810 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 64.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 64.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 32.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 50.000 | % | 0.000 | 5 |
Achieved Occupancy | 40.924 | % | 0.007 | 5 |
Achieved Active Warps Per SM | 26.190 | warp | 0.003 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. This kernel's theoretical occupancy (50.0%) is limited by the required amount of shared memory. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 631076.75 | μs |
Device Time | 387.55 | μs |
Self CPU Time | 38.91 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 631037.84 | μs |
Device Time | 387.55 | μs |
Self CPU Time | 93.55 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 630321.57 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 73.78 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 625424.83 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 625424.83 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 502821.69 | μs |
Device Time | 21311.11 | μs |
Self CPU Time | 502821.69 | μs |
Self Device Time | 21311.11 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
warp_argmax_nosm_kernel(float const*, long*, int, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 75021.14 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 75021.14 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 22836.76 | μs |
Device Time | 39570.47 | μs |
Self CPU Time | 22836.76 | μs |
Self Device Time | 39570.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 65450.48 | μs |
Device Time | 591722.59 | μs |
Self CPU Time | 14105.33 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 51349.62 | μs |
Device Time | 591722.59 | μs |
Self CPU Time | 15223.92 | μs |
Self Device Time | 591722.59 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 591722.59 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 591722.59 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45283 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.