import torch
import torch.nn as nn
import torch.functional as F
def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor
dim (int): Dimension to perform argmax over
Returns:
torch.Tensor: Output tensor with argmax applied over specified dimension
"""
return torch.argmax(x, dim)
class Model(nn.Module):
"""
Simple model that performs Argmax over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to perform argmax.
Args:
dim (int): The dimension to perform argmax over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor
fn: Function to apply (defaults to module_fn)
Returns:
torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
"""
return fn(x, self.dim)
batch_size = 16
dim1 = 256
dim2 = 256
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [1]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs Argmax over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to perform argmax.
Args:
dim (int): The dimension to perform argmax over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies argmax over the specified dimension to the input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor with argmax applied, with the specified dimension removed.
"""
return torch.argmax(x, dim=self.dim)
batch_size = 16
dim1 = 256
dim2 = 256
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [1]
#include <torch/extension.h>
#include <vector>
#include <float.h>
__global__ void argmax_kernel_coop_sync_opt(
const float* __restrict__ x,
int64_t* __restrict__ indices,
const int outerSize,
const int dimSize,
const int innerSize) {
int slice = blockIdx.x;
if (slice >= outerSize * innerSize) return;
int outer_idx = slice / innerSize;
int inner_idx = slice % innerSize;
int base_offset = outer_idx * (dimSize * innerSize) + inner_idx;
float local_max = -FLT_MAX;
int local_argmax = 0;
for (int d = threadIdx.x; d < dimSize; d += blockDim.x) {
float curr_val = x[base_offset + d * innerSize];
if (curr_val > local_max) {
local_max = curr_val;
local_argmax = d;
}
}
extern __shared__ char shared_mem[];
float* s_max = reinterpret_cast<float*>(shared_mem);
int* s_idx = reinterpret_cast<int*>(s_max + blockDim.x);
s_max[threadIdx.x] = local_max;
s_idx[threadIdx.x] = local_argmax;
__syncthreads();
for (unsigned int s = blockDim.x / 2; s > 32; s >>= 1) {
if (threadIdx.x < s) {
if (s_max[threadIdx.x + s] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + s];
s_idx[threadIdx.x] = s_idx[threadIdx.x + s];
}
}
__syncthreads();
}
if (threadIdx.x < 32) {
if (s_max[threadIdx.x + 32] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 32];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 32];
}
if (s_max[threadIdx.x + 16] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 16];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 16];
}
if (s_max[threadIdx.x + 8] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 8];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 8];
}
if (s_max[threadIdx.x + 4] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 4];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 4];
}
if (s_max[threadIdx.x + 2] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 2];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 2];
}
if (s_max[threadIdx.x + 1] > s_max[threadIdx.x]) {
s_max[threadIdx.x] = s_max[threadIdx.x + 1];
s_idx[threadIdx.x] = s_idx[threadIdx.x + 1];
}
}
if (threadIdx.x == 0) {
indices[slice] = s_idx[0];
}
}
torch::Tensor argmax_forward_cuda(const torch::Tensor& x, const int64_t dim) {
TORCH_CHECK(x.scalar_type() == at::kFloat, "Only float32 is supported.");
auto x_contig = x.contiguous();
auto sizes = x_contig.sizes();
int ndim = x_contig.dim();
TORCH_CHECK(dim >= 0 && dim < ndim, "Invalid dim for argmax.");
int outerSize = 1;
for (int d = 0; d < dim; d++) {
outerSize *= sizes[d];
}
int dimSize = sizes[dim];
int innerSize = 1;
for (int d = dim + 1; d < ndim; d++) {
innerSize *= sizes[d];
}
std::vector<int64_t> out_sizes;
for (int d = 0; d < ndim; d++) {
if (d == dim) continue;
out_sizes.push_back(sizes[d]);
}
auto options = torch::TensorOptions().device(x.device()).dtype(torch::kLong);
auto indices = torch::empty(out_sizes, options);
int slices = outerSize * innerSize;
const int threads = 128;
int blocks = slices;
int sharedMemSize = threads * (sizeof(float) + sizeof(int));
argmax_kernel_coop_sync_opt<<<blocks, threads, sharedMemSize>>>(
x_contig.data_ptr<float>(),
indices.data_ptr<int64_t>(),
outerSize,
dimSize,
innerSize
);
return indices;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &argmax_forward_cuda, "ArgMax CUDA forward with optimized synchronization");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.964 | inst/cycle | 0.001 | 5 |
Executed Ipc Elapsed | 0.762 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 24.200 | % | 0.373 | 5 |
Issued Ipc Active | 0.970 | inst/cycle | 0.001 | 5 |
SM Busy | 24.200 | % | 0.373 | 5 |
Memory Throughput | 369015932520.718 | byte/second | 6300160817878350848.000 | 5 |
Mem Busy | 62.996 | % | 0.300 | 5 |
Max Bandwidth | 28.418 | % | 0.081 | 5 |
L1/TEX Hit Rate | 1.620 | % | 0.118 | 5 |
L2 Hit Rate | 84.254 | % | 0.849 | 5 |
Mem Pipes Busy | 13.324 | % | 0.008 | 5 |
Warp Cycles Per Issued Instruction | 53.014 | cycle | 1.040 | 5 |
Warp Cycles Per Executed Instruction | 53.146 | cycle | 1.046 | 5 |
Avg. Active Threads Per Warp | 31.580 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 26.650 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 21.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 16.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 81.412 | % | 0.615 | 5 |
Achieved Active Warps Per SM | 52.104 | warp | 0.253 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (81.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 230124.62 | μs |
Device Time | 386.43 | μs |
Self CPU Time | 39.57 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 230085.05 | μs |
Device Time | 386.43 | μs |
Self CPU Time | 106.16 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 229354.66 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 98.27 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 228957.79 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 228957.79 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 526059.42 | μs |
Device Time | 20396.21 | μs |
Self CPU Time | 526059.42 | μs |
Self Device Time | 20396.21 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
argmax_kernel_coop_sync_opt(float const*, long*, int, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 86967.78 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 86967.78 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 18979.15 | μs |
Device Time | 40645.47 | μs |
Self CPU Time | 18979.15 | μs |
Self Device Time | 40645.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 67172.05 | μs |
Device Time | 607133.34 | μs |
Self CPU Time | 13399.54 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 53774.28 | μs |
Device Time | 607133.34 | μs |
Self CPU Time | 15789.32 | μs |
Self Device Time | 607133.34 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 607133.34 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 607133.34 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45284 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.