← Back to Leaderboard

The AI CUDA Engineer 👷

6_Matmul_with_large_K_dimension_6_matmul_ldg_128bit_aligned_base

Level 1 • Task 6
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a single matrix multiplication (C = A * B) with a large K dimension.

    Args:
        A: Input tensor of shape (M, K)
        B: Input tensor of shape (K, N)

    Returns:
        Output tensor of shape (M, N)
    """
    return torch.matmul(A, B)


class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) with a large K dimension
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A: torch.Tensor, B: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(A, B)


M = 256
N = 256
K = 131072


def get_inputs():
    A = torch.randn(M, K)
    B = torch.randn(K, N)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) with a large K dimension
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
        """
        Performs matrix multiplication of A and B.

        Args:
            A: Input tensor of shape (M, K)
            B: Input tensor of shape (K, N)

        Returns:
            Output tensor of shape (M, N)
        """
        return torch.matmul(A, B)

M = 256
N = 256
K = 131072

def get_inputs():
    A = torch.randn(M, K)
    B = torch.randn(K, N)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 6 • 6_Matmul_with_large_K_dimension_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 double_buffered_matmul_base 5.11 0.07 0.11
🥈 6_matmul_multi_stream_base 5.26 0.07 0.11
🥉 fewer_sync_matmul_edit_1_base 5.27 0.07 0.11
4 atomic_operations_matmul_edit_1 5.27 0.07 0.11
5 6_matmul_modular_refactored_base 5.30 0.06 0.11
6 modular_matmul_device_fn_edit_1 5.30 0.06 0.11
7 matmul_stream_ldg_base 5.31 0.06 0.11
8 6_matmul_modular_device_func_base 5.31 0.06 0.11
9 6_matmul_modular_device_base 5.32 0.06 0.11
10 6_matmul_no_divergence_base 5.32 0.06 0.11
11 6_matmul_ldg_base 5.33 0.06 0.11
12 optimized_streamed_tiled_matmul_base 5.33 0.06 0.11
12 6_matmul_even_workload_distribution_base 5.33 0.06 0.11
14 optimized_matmul_kernel_base 5.34 0.06 0.11
15 grid_stride_matmul_edit_1 5.34 0.06 0.11
16 6_matmul_stride_loops_base 5.34 0.06 0.11
17 6_matmul_ldg_128bit_aligned_base 5.35 0.06 0.11
18 optimized_matmul_kernel_base 5.35 0.06 0.11
19 unroll_loop_matmul_base 5.36 0.06 0.11
20 warp_divergence_optimized_matmul_base 5.37 0.06 0.11
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define TILE_WIDTH 16

// Optimized CUDA kernel for matrix multiplication using __ldg() for read-only global memory loads
// and assuming that the input matrices A and B are allocated on 128-bit boundaries.

template <typename scalar_t>
__global__ void matmul_cuda_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B,
                                     scalar_t* __restrict__ C, int M, int K, int N) {
    __shared__ scalar_t sA[TILE_WIDTH][TILE_WIDTH];
    __shared__ scalar_t sB[TILE_WIDTH][TILE_WIDTH];

    int row = blockIdx.y * TILE_WIDTH + threadIdx.y; // Index in M dimension
    int col = blockIdx.x * TILE_WIDTH + threadIdx.x; // Index in N dimension

    scalar_t value = 0;
    int num_tiles = (K + TILE_WIDTH - 1) / TILE_WIDTH;

    for (int t = 0; t < num_tiles; ++t) {
        int tiledA_col = t * TILE_WIDTH + threadIdx.x;
        int tiledB_row = t * TILE_WIDTH + threadIdx.y;

        // Use __ldg() for read-only accesses, assuming A and B are 128-bit aligned
        if (row < M && tiledA_col < K)
            sA[threadIdx.y][threadIdx.x] = __ldg(&A[row * K + tiledA_col]);
        else
            sA[threadIdx.y][threadIdx.x] = 0;

        if (col < N && tiledB_row < K)
            sB[threadIdx.y][threadIdx.x] = __ldg(&B[tiledB_row * N + col]);
        else
            sB[threadIdx.y][threadIdx.x] = 0;

        __syncthreads();

        #pragma unroll
        for (int i = 0; i < TILE_WIDTH; ++i) {
            value += sA[threadIdx.y][i] * sB[i][threadIdx.x];
        }

        __syncthreads();
    }

    if (row < M && col < N) {
        C[row * N + col] = value;
    }
}

// Forward function

torch::Tensor module_fn(torch::Tensor A, torch::Tensor B) {
    TORCH_CHECK(A.is_cuda(), "Input tensor A must be a CUDA tensor");
    TORCH_CHECK(B.is_cuda(), "Input tensor B must be a CUDA tensor");

    int64_t M = A.size(0);
    int64_t K = A.size(1);
    int64_t N = B.size(1);
    TORCH_CHECK(K == B.size(0), "Inner dimensions of A and B must match");

    // Allocate output tensor
    auto C = torch::empty({M, N}, A.options());

    dim3 threads_per_block(TILE_WIDTH, TILE_WIDTH);
    dim3 num_blocks((N + TILE_WIDTH - 1) / TILE_WIDTH, (M + TILE_WIDTH - 1) / TILE_WIDTH);

    AT_DISPATCH_FLOATING_TYPES(A.scalar_type(), "matmul_cuda_kernel", ([&] {
        matmul_cuda_kernel<scalar_t><<<num_blocks, threads_per_block>>>(
            A.data_ptr<scalar_t>(),
            B.data_ptr<scalar_t>(),
            C.data_ptr<scalar_t>(),
            M, K, N);
    }));

    cudaDeviceSynchronize();
    return C;
}

// Pybind11 module binding
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn, "Optimized matrix multiplication forward (CUDA, __ldg and 128-bit aligned loads)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.830 inst/cycle 0.000 5
Executed Ipc Elapsed 0.830 inst/cycle 0.000 5
Issue Slots Busy 20.816 % 0.000 5
Issued Ipc Active 0.830 inst/cycle 0.000 5
SM Busy 20.816 % 0.000 5
Memory Throughput 46695265371.352 byte/second 2253518735904953.000 5
Mem Busy 42.054 % 0.001 5
Max Bandwidth 35.788 % 0.001 5
L1/TEX Hit Rate 0.204 % 0.001 5
L2 Hit Rate 83.490 % 0.003 5
Mem Pipes Busy 33.032 % 0.000 5
Warp Cycles Per Issued Instruction 18.516 cycle 0.000 5
Warp Cycles Per Executed Instruction 18.516 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 32.000 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.094 % 0.000 5
Achieved Active Warps Per SM 15.420 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 537049.68 μs
Device Time 28570.51 μs
Self CPU Time 42.88 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 537006.80 μs
Device Time 28570.51 μs
Self CPU Time 109.15 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 507924.59 μs
Device Time 0.00 μs
Self CPU Time 83.82 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 507078.21 μs
Device Time 0.00 μs
Self CPU Time 507078.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void matmul_cuda_kernel<float>(float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 7874013.86 μs
Self CPU Time 0.00 μs
Self Device Time 7874013.86 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 7970791.87 μs
Device Time 9919.95 μs
Self CPU Time 7970791.87 μs
Self Device Time 9919.95 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 22930.20 μs
Device Time 114195.18 μs
Self CPU Time 3535.19 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 19399.84 μs
Device Time 114195.18 μs
Self CPU Time 4854.76 μs
Self Device Time 114195.18 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 114195.18 μs
Self CPU Time 0.00 μs
Self Device Time 114195.18 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:11:36 bugprone-easily-swappable-parameters
11 | __global__ void matmul_cuda_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:11:65: note: the first parameter in the range is 'A'
11 | __global__ void matmul_cuda_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:11:97: note: the last parameter in the range is 'B'
11 | __global__ void matmul_cuda_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:16:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | int row = blockIdx.y * TILE_WIDTH + threadIdx.y; // Index in M dimension
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:17:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int col = blockIdx.x * TILE_WIDTH + threadIdx.x; // Index in N dimension
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:23:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int tiledA_col = t * TILE_WIDTH + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:24:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | int tiledB_row = t * TILE_WIDTH + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b3_s0_6_matmul_ldg_128bit_aligned/base/base.cu:69:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
69 | AT_DISPATCH_FLOATING_TYPES(A.scalar_type(), "matmul_cuda_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^