← Back to Leaderboard

The AI CUDA Engineer 👷

6_Matmul_with_large_K_dimension_optimized_matmul_kernel_base

Level 1 • Task 6
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a single matrix multiplication (C = A * B) with a large K dimension.

    Args:
        A: Input tensor of shape (M, K)
        B: Input tensor of shape (K, N)

    Returns:
        Output tensor of shape (M, N)
    """
    return torch.matmul(A, B)


class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) with a large K dimension
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A: torch.Tensor, B: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(A, B)


M = 256
N = 256
K = 131072


def get_inputs():
    A = torch.randn(M, K)
    B = torch.randn(K, N)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) with a large K dimension
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
        """
        Performs matrix multiplication of A and B.

        Args:
            A: Input tensor of shape (M, K)
            B: Input tensor of shape (K, N)

        Returns:
            Output tensor of shape (M, N)
        """
        return torch.matmul(A, B)

M = 256
N = 256
K = 131072

def get_inputs():
    A = torch.randn(M, K)
    B = torch.randn(K, N)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 6 • 6_Matmul_with_large_K_dimension_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 double_buffered_matmul_base 5.11 0.07 0.11
🥈 6_matmul_multi_stream_base 5.26 0.07 0.11
🥉 fewer_sync_matmul_edit_1_base 5.27 0.07 0.11
4 atomic_operations_matmul_edit_1 5.27 0.07 0.11
5 6_matmul_modular_refactored_base 5.30 0.06 0.11
6 modular_matmul_device_fn_edit_1 5.30 0.06 0.11
7 matmul_stream_ldg_base 5.31 0.06 0.11
8 6_matmul_modular_device_func_base 5.31 0.06 0.11
9 6_matmul_modular_device_base 5.32 0.06 0.11
10 6_matmul_no_divergence_base 5.32 0.06 0.11
11 6_matmul_ldg_base 5.33 0.06 0.11
12 optimized_streamed_tiled_matmul_base 5.33 0.06 0.11
12 6_matmul_even_workload_distribution_base 5.33 0.06 0.11
14 optimized_matmul_kernel_base 5.34 0.06 0.11
15 grid_stride_matmul_edit_1 5.34 0.06 0.11
16 6_matmul_stride_loops_base 5.34 0.06 0.11
17 6_matmul_ldg_128bit_aligned_base 5.35 0.06 0.11
18 optimized_matmul_kernel_base 5.35 0.06 0.11
19 unroll_loop_matmul_base 5.36 0.06 0.11
20 warp_divergence_optimized_matmul_base 5.37 0.06 0.11
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define TILE_WIDTH 16

// Optimized CUDA kernel combining techniques from both kernels
// Uses shared memory, __ldg for memory access, and minimizes warp divergence

template <typename scalar_t>
__global__ void optimized_matmul_kernel(const scalar_t* __restrict__ A,
                                         const scalar_t* __restrict__ B,
                                         scalar_t* __restrict__ C,
                                         int M, int K, int N) {
    int row = blockIdx.y * TILE_WIDTH + threadIdx.y;
    int col = blockIdx.x * TILE_WIDTH + threadIdx.x;
    scalar_t value = 0;

    // Determine if this block is completely interior
    bool interior_block = ((blockIdx.x + 1) * TILE_WIDTH <= N) && ((blockIdx.y + 1) * TILE_WIDTH <= M);

    __shared__ scalar_t sA[TILE_WIDTH][TILE_WIDTH];
    __shared__ scalar_t sB[TILE_WIDTH][TILE_WIDTH];

    int num_tiles = (K + TILE_WIDTH - 1) / TILE_WIDTH;
    for (int t = 0; t < num_tiles; ++t) {
        int tiledA_col = t * TILE_WIDTH + threadIdx.x;
        int tiledB_row = t * TILE_WIDTH + threadIdx.y;

        // Load tiles with consideration for interior blocks
        if (interior_block) {
            sA[threadIdx.y][threadIdx.x] = __ldg(&A[row * K + tiledA_col]);
            sB[threadIdx.y][threadIdx.x] = __ldg(&B[tiledB_row * N + col]);
        } else {
            sA[threadIdx.y][threadIdx.x] = (row < M && tiledA_col < K) ? __ldg(&A[row * K + tiledA_col]) : static_cast<scalar_t>(0);
            sB[threadIdx.y][threadIdx.x] = (col < N && tiledB_row < K) ? __ldg(&B[tiledB_row * N + col]) : static_cast<scalar_t>(0);
        }

        __syncthreads();

        // Compute the dot product
        #pragma unroll
        for (int i = 0; i < TILE_WIDTH; ++i) {
            value += sA[threadIdx.y][i] * sB[i][threadIdx.x];
        }
        __syncthreads();
    }

    // Write the result to the output matrix
    if (row < M && col < N) {
        C[row * N + col] = value;
    }
}

// Host function exposed to Python via Pybind11
torch::Tensor module_fn(torch::Tensor A, torch::Tensor B) {
    TORCH_CHECK(A.is_cuda(), "Input tensor A must be a CUDA tensor");
    TORCH_CHECK(B.is_cuda(), "Input tensor B must be a CUDA tensor");

    int64_t M = A.size(0);
    int64_t K = A.size(1);
    int64_t N = B.size(1);
    TORCH_CHECK(K == B.size(0), "Inner dimensions of A and B must match");

    auto C = torch::empty({M, N}, A.options());

    dim3 threads(TILE_WIDTH, TILE_WIDTH);
    dim3 blocks((N + TILE_WIDTH - 1) / TILE_WIDTH, (M + TILE_WIDTH - 1) / TILE_WIDTH);

    AT_DISPATCH_FLOATING_TYPES(A.scalar_type(), "optimized_matmul_kernel", ([&] {
        optimized_matmul_kernel<scalar_t><<<blocks, threads>>>(
            A.data_ptr<scalar_t>(),
            B.data_ptr<scalar_t>(),
            C.data_ptr<scalar_t>(),
            M, K, N);
    }));

    cudaDeviceSynchronize();
    return C;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn, "Optimized matrix multiplication kernel (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.750 inst/cycle 0.000 5
Executed Ipc Elapsed 0.740 inst/cycle 0.000 5
Issue Slots Busy 18.760 % 0.000 5
Issued Ipc Active 0.750 inst/cycle 0.000 5
SM Busy 18.760 % 0.000 5
Memory Throughput 46642035924.132 byte/second 1493984580046127.250 5
Mem Busy 41.996 % 0.001 5
Max Bandwidth 35.724 % 0.001 5
L1/TEX Hit Rate 0.208 % 0.003 5
L2 Hit Rate 83.490 % 0.007 5
Mem Pipes Busy 32.974 % 0.001 5
Warp Cycles Per Issued Instruction 20.532 cycle 0.000 5
Warp Cycles Per Executed Instruction 20.532 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 32.000 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 24.078 % 0.000 5
Achieved Active Warps Per SM 15.410 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (24.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 360882.64 μs
Device Time 30754.11 μs
Self CPU Time 46.60 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 360836.03 μs
Device Time 30754.11 μs
Self CPU Time 125.03 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 329571.87 μs
Device Time 0.00 μs
Self CPU Time 100.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 328914.44 μs
Device Time 0.00 μs
Self CPU Time 328914.44 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 8271866.20 μs
Device Time 10393.55 μs
Self CPU Time 8271866.20 μs
Self Device Time 10393.55 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void optimized_matmul_kernel<float>(float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 8172912.95 μs
Self CPU Time 0.00 μs
Self Device Time 8172912.95 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 26391.58 μs
Device Time 118610.46 μs
Self CPU Time 4442.03 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 21954.60 μs
Device Time 118610.46 μs
Self CPU Time 6435.90 μs
Self Device Time 118610.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 118610.46 μs
Self CPU Time 0.00 μs
Self Device Time 118610.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:11:41 bugprone-easily-swappable-parameters
11 | __global__ void optimized_matmul_kernel(const scalar_t* __restrict__ A,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 | const scalar_t* __restrict__ B,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:11:70: note: the first parameter in the range is 'A'
11 | __global__ void optimized_matmul_kernel(const scalar_t* __restrict__ A,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:12:71: note: the last parameter in the range is 'B'
12 | const scalar_t* __restrict__ B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:15:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
15 | int row = blockIdx.y * TILE_WIDTH + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:16:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | int col = blockIdx.x * TILE_WIDTH + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:27:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int tiledA_col = t * TILE_WIDTH + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:28:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int tiledB_row = t * TILE_WIDTH + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_6/b8_s2_optimized_matmul_kernel/base/base.cu:70:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
70 | AT_DISPATCH_FLOATING_TYPES(A.scalar_type(), "optimized_matmul_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^