← Back to Leaderboard

The AI CUDA Engineer 👷

60_ConvTranspose3d_Swish_GroupNorm_HardSwishwarp_optimized_fused_base_base

Level 2 • Task 60
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    groups: int,
    eps: float,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D transposed convolution, Swish activation, group normalization and HardSwish activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        groups (int): Number of groups for group normalization
        eps (float): Epsilon value for group normalization
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = torch.sigmoid(x) * x  # Swish activation
    x = F.group_norm(
        x, num_groups=groups, weight=group_norm_weight, bias=group_norm_bias, eps=eps
    )
    x = F.hardswish(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation,
    group normalization, and then HardSwish activation.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, groups, eps
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding
        )
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(gn.weight)
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x, stride, padding, groups, eps, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            groups,
            eps,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.group_norm_weight,
            self.group_norm_bias,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        groups,
        eps,
    ]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation, 
    group normalization, and then HardSwish activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups, eps, bias=True):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
        self.group_norm = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        # Add noise to group norm bias to match functional implementation
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = torch.sigmoid(x) * x  # Swish activation
        x = self.group_norm(x)
        x = torch.nn.functional.hardswish(x)  # HardSwish activation
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]

Kernel Information

Related Kernels (Level 2, Task 60 • 60_ConvTranspose3d_Swish_GroupNorm_HardSwish)

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cooperative_groups.h>

namespace cg = cooperative_groups;

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

template<typename T>
__device__ __forceinline__ T warp_reduce_sum(T val) {
    #pragma unroll
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

__device__ __forceinline__ void warp_reduce_double(float& sum, float& sumsq) {
    #pragma unroll
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        sum += __shfl_down_sync(0xffffffff, sum, offset);
        sumsq += __shfl_down_sync(0xffffffff, sumsq, offset);
    }
}

template <int WARPS_PER_BLOCK>
__global__ void warp_optimized_kernel(
    const float* __restrict__ input,
    float* __restrict__ output,
    const float* __restrict__ gamma,
    const float* __restrict__ beta,
    int N, int C, int D, int H, int W,
    int groups,
    float eps
) {
    cg::thread_block block = cg::this_thread_block();
    cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
    
    const int tid = threadIdx.x;
    const int wid = tid / warpSize;
    const int lane = tid % warpSize;
    
    const int n = blockIdx.x;
    const int g = blockIdx.y;
    
    const int channels_per_group = C / groups;
    const int group_size = channels_per_group * D * H * W;
    const int base = n * (C * D * H * W) + g * group_size;
    
    // Per-thread accumulators
    float local_sum = 0.0f;
    float local_sumsq = 0.0f;
    
    // Process elements with warp-stride loops
    constexpr int VECTOR_SIZE = 4;
    const int warp_offset = wid * warpSize + lane;
    const int stride = WARPS_PER_BLOCK * warpSize;
    
    // Aligned vectorized processing
    const int aligned_size = (group_size / VECTOR_SIZE) * VECTOR_SIZE;
    for (int i = warp_offset * VECTOR_SIZE; i < aligned_size; i += stride * VECTOR_SIZE) {
        float4 vec = *reinterpret_cast<const float4*>(input + base + i);
        #pragma unroll
        for (int j = 0; j < 4; j++) {
            float x = ((float*)&vec)[j];
            float sw = x / (1.0f + expf(-x));
            local_sum += sw;
            local_sumsq += sw * sw;
        }
    }
    
    // Handle remaining elements
    for (int i = aligned_size + warp_offset; i < group_size; i += stride) {
        float x = __ldg(&input[base + i]);
        float sw = x / (1.0f + expf(-x));
        local_sum += sw;
        local_sumsq += sw * sw;
    }
    
    // Warp-level reduction
    warp_reduce_double(local_sum, local_sumsq);
    
    // First thread in each warp aggregates to global sum using atomics
    __shared__ float mean, inv_std;
    if (lane == 0) {
        atomicAdd(&mean, local_sum);
        atomicAdd(&inv_std, local_sumsq);
    }
    block.sync();
    
    // First thread computes final statistics
    if (tid == 0) {
        mean = mean / group_size;
        float variance = inv_std / group_size - mean * mean;
        inv_std = rsqrtf(variance + eps);
    }
    block.sync();
    
    // Apply normalization and activations using the computed statistics
    for (int i = warp_offset * VECTOR_SIZE; i < aligned_size; i += stride * VECTOR_SIZE) {
        float4 in_vec = *reinterpret_cast<const float4*>(input + base + i);
        float4 out_vec;
        
        #pragma unroll
        for (int j = 0; j < 4; j++) {
            const int idx = i + j;
            float x = ((float*)&in_vec)[j];
            float sw = x / (1.0f + expf(-x));
            
            const int c = idx / (D * H * W);
            const int gc = g * channels_per_group + c;
            
            float norm = (sw - mean) * inv_std;
            float y = norm * __ldg(&gamma[gc]) + __ldg(&beta[gc]);
            ((float*)&out_vec)[j] = y * fminf(fmaxf(y + 3.0f, 0.0f), 6.0f) / 6.0f;
        }
        
        *reinterpret_cast<float4*>(output + base + i) = out_vec;
    }
    
    // Handle remaining elements
    for (int i = aligned_size + warp_offset; i < group_size; i += stride) {
        float x = __ldg(&input[base + i]);
        float sw = x / (1.0f + expf(-x));
        
        const int c = i / (D * H * W);
        const int gc = g * channels_per_group + c;
        
        float norm = (sw - mean) * inv_std;
        float y = norm * __ldg(&gamma[gc]) + __ldg(&beta[gc]);
        output[base + i] = y * fminf(fmaxf(y + 3.0f, 0.0f), 6.0f) / 6.0f;
    }
}

torch::Tensor forward(
    torch::Tensor x,
    int stride,
    int padding,
    int groups,
    float eps,
    torch::Tensor conv_transpose,
    torch::Tensor conv_transpose_bias,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias
) {
    CHECK_INPUT(x);
    CHECK_INPUT(conv_transpose);
    CHECK_INPUT(conv_transpose_bias);
    CHECK_INPUT(group_norm_weight);
    CHECK_INPUT(group_norm_bias);

    x = torch::conv_transpose3d(x, conv_transpose, conv_transpose_bias, stride, padding);
    torch::Tensor output = torch::empty_like(x);

    constexpr int WARPS_PER_BLOCK = 8;
    constexpr int THREADS_PER_BLOCK = WARPS_PER_BLOCK * 32;
    
    dim3 grid(x.size(0), groups);
    
    warp_optimized_kernel<WARPS_PER_BLOCK><<<grid, THREADS_PER_BLOCK>>>(
        x.data_ptr<float>(),
        output.data_ptr<float>(),
        group_norm_weight.data_ptr<float>(),
        group_norm_bias.data_ptr<float>(),
        x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
        groups,
        eps
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Warp-optimized fused kernel");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.628 inst/cycle 0.000 5
Executed Ipc Elapsed 1.584 inst/cycle 0.000 5
Issue Slots Busy 40.716 % 0.024 5
Issued Ipc Active 1.628 inst/cycle 0.000 5
SM Busy 40.716 % 0.024 5
Memory Throughput 2619173364771.312 byte/second 7001510664795663360.000 5
Mem Busy 42.598 % 0.002 5
Max Bandwidth 78.134 % 0.006 5
L1/TEX Hit Rate 16.288 % 0.002 5
L2 Hit Rate 35.562 % 0.001 5
Mem Pipes Busy 10.424 % 0.000 5
Warp Cycles Per Issued Instruction 18.520 cycle 0.006 5
Warp Cycles Per Executed Instruction 18.522 cycle 0.006 5
Avg. Active Threads Per Warp 31.990 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.400 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 47.138 % 0.001 5
Achieved Active Warps Per SM 30.168 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (34.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (47.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 3948725.96 μs
Device Time 7044405.91 μs
Self CPU Time 3208.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3945517.23 μs
Device Time 7044405.91 μs
Self CPU Time 4419.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3941097.24 μs
Device Time 7044405.91 μs
Self CPU Time 9093.08 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 434373.36 μs
Device Time 5616713.81 μs
Self CPU Time 115343.99 μs
Self Device Time 5616713.81 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6930562.23 μs
Device Time 58825.43 μs
Self CPU Time 6930562.23 μs
Self Device Time 58825.43 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3713190.21 μs
Self CPU Time 0.00 μs
Self Device Time 3713190.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::add_
CPU Time 3495077.12 μs
Device Time 1427692.10 μs
Self CPU Time 8512.74 μs
Self Device Time 1427692.10 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45370 warnings generated when compiling for host.
Suppressed 45399 warnings (45352 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:10:35 bugprone-macro-parentheses
10 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:11:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
11 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:37:5: warning: 2 adjacent parameters of 'warp_optimized_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
37 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:37:9: note: the first parameter in the range is 'N'
37 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:37:16: note: the last parameter in the range is 'C'
37 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:37:33: warning: 3 adjacent parameters of 'warp_optimized_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
37 | int N, int C, int D, int H, int W,
| ^~~~~~
38 | int groups,
| ~~~~~~~~~~~
39 | float eps
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:37:37: note: the first parameter in the range is 'W'
37 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:39:11: note: the last parameter in the range is 'eps'
39 | float eps
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:39:5: note: 'int' and 'float' may be implicitly converted
39 | float eps
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:44:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:48:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | const int n = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:49:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | const int g = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:98:23: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
98 | mean = mean / group_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:99:36: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
99 | float variance = inv_std / group_size - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:143:5: warning: 2 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
143 | int padding,
| ^~~~~~~~~~~~
144 | int groups,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:143:9: note: the first parameter in the range is 'padding'
143 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:144:9: note: the last parameter in the range is 'groups'
144 | int groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:146:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
146 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:148:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
148 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:149:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
149 | torch::Tensor group_norm_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:170:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:170:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:170:31: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:170:42: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b10_s1_warp_optimized_fused_base/base/base.cu:170:53: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | x.size(0), x.size(1), x.size(2), x.size(3), x.size(4),
| ^