← Back to Leaderboard

The AI CUDA Engineer 👷

60_ConvTranspose3d_Swish_GroupNorm_HardSwishefficient_fused_kernel_base

Level 2 • Task 60
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    groups: int,
    eps: float,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D transposed convolution, Swish activation, group normalization and HardSwish activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        groups (int): Number of groups for group normalization
        eps (float): Epsilon value for group normalization
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = torch.sigmoid(x) * x  # Swish activation
    x = F.group_norm(
        x, num_groups=groups, weight=group_norm_weight, bias=group_norm_bias, eps=eps
    )
    x = F.hardswish(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation,
    group normalization, and then HardSwish activation.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, groups, eps
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding
        )
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(gn.weight)
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x, stride, padding, groups, eps, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            groups,
            eps,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.group_norm_weight,
            self.group_norm_bias,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        groups,
        eps,
    ]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation, 
    group normalization, and then HardSwish activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups, eps, bias=True):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
        self.group_norm = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        # Add noise to group norm bias to match functional implementation
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = torch.sigmoid(x) * x  # Swish activation
        x = self.group_norm(x)
        x = torch.nn.functional.hardswish(x)  # HardSwish activation
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]

Kernel Information

Related Kernels (Level 2, Task 60 • 60_ConvTranspose3d_Swish_GroupNorm_HardSwish)

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <math.h>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

__device__ __forceinline__ float4 load_float4_aligned(const float* addr) {
    return *reinterpret_cast<const float4*>(addr);
}

__global__ void efficient_fused_kernel(
    const float* __restrict__ input,
    float* __restrict__ output,
    const float* __restrict__ gamma,
    const float* __restrict__ beta,
    int N, int C, int D, int H, int W,
    int groups, float eps
) {
    int n = blockIdx.x;
    int g = blockIdx.y;

    int channels_per_group = C / groups;
    int group_elements = channels_per_group * D * H * W;
    int base = n * (C * D * H * W) + g * group_elements;

    int tid = threadIdx.x;
    int blockSize = blockDim.x;

    float local_sum = 0.0f;
    float local_sumsq = 0.0f;

    for (int i = tid; i < group_elements; i += blockSize) {
        int index = base + i;
        float x = input[index];
        float sw = x / (1.0f + expf(-x));
        local_sum += sw;
        local_sumsq += sw * sw;
    }

    unsigned int mask = 0xffffffff;
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        local_sum += __shfl_down_sync(mask, local_sum, offset);
        local_sumsq += __shfl_down_sync(mask, local_sumsq, offset);
    }

    int warpId = tid / warpSize;
    int laneId = tid % warpSize;

    extern __shared__ float shared[];
    float* warp_sums = shared;
    float* warp_sumsq = shared + blockDim.x/warpSize;

    if (laneId == 0) {
        warp_sums[warpId] = local_sum;
        warp_sumsq[warpId] = local_sumsq;
    }
    __syncthreads();

    if (tid < (blockDim.x / warpSize)) {
        local_sum = warp_sums[tid];
        local_sumsq = warp_sumsq[tid];
    }

    if (tid == 0) {
        float total_sum = 0.0f;
        float total_sumsq = 0.0f;
        for (int i = 0; i < blockDim.x/warpSize; i++) {
            total_sum += warp_sums[i];
            total_sumsq += warp_sumsq[i];
        }
        warp_sums[0] = total_sum;
        warp_sumsq[0] = total_sumsq;
    }
    __syncthreads();

    float mean = warp_sums[0] / group_elements;
    float var = warp_sumsq[0] / group_elements - mean * mean;
    float inv_std = rsqrtf(var + eps);

    for (int i = tid; i < group_elements; i += blockSize) {
        int index = base + i;
        float x = input[index];
        float sw = x / (1.0f + expf(-x));
        int local_channel = i / (D * H * W);
        int global_channel = g * channels_per_group + local_channel;

        float norm = (sw - mean) * inv_std;
        float y = norm * gamma[global_channel] + beta[global_channel];
        float hs = y * fminf(fmaxf(y + 3.0f, 0.0f), 6.0f) / 6.0f;
        output[index] = hs;
    }
}

torch::Tensor forward(
    torch::Tensor x,
    int stride,
    int padding,
    int groups,
    float eps,
    torch::Tensor conv_transpose,
    torch::Tensor conv_transpose_bias,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias
) {
    CHECK_INPUT(x);
    CHECK_INPUT(conv_transpose);
    CHECK_INPUT(conv_transpose_bias);
    CHECK_INPUT(group_norm_weight);
    CHECK_INPUT(group_norm_bias);

    x = torch::conv_transpose3d(x, conv_transpose, conv_transpose_bias, stride, padding);
    torch::Tensor output = torch::empty_like(x);

    int N = x.size(0);
    int C = x.size(1);
    int D = x.size(2);
    int H = x.size(3);
    int W = x.size(4);

    dim3 grid(N, groups);
    int threads = 256;
    size_t shared_mem_size = 2 * (threads/32) * sizeof(float);

    efficient_fused_kernel<<<grid, threads, shared_mem_size>>>(
        x.data_ptr<float>(),
        output.data_ptr<float>(),
        group_norm_weight.data_ptr<float>(),
        group_norm_bias.data_ptr<float>(),
        N, C, D, H, W,
        groups,
        eps
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Efficient fused kernel");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.092 inst/cycle 0.000 5
Executed Ipc Elapsed 1.060 inst/cycle 0.000 5
Issue Slots Busy 27.272 % 0.006 5
Issued Ipc Active 1.092 inst/cycle 0.000 5
SM Busy 27.272 % 0.006 5
Memory Throughput 1757176112200.202 byte/second 2816629389968120832.000 5
Mem Busy 31.830 % 0.008 5
Max Bandwidth 52.418 % 0.003 5
L1/TEX Hit Rate 24.452 % 0.002 5
L2 Hit Rate 41.432 % 0.004 5
Mem Pipes Busy 10.572 % 0.000 5
Warp Cycles Per Issued Instruction 27.052 cycle 0.003 5
Warp Cycles Per Executed Instruction 27.052 cycle 0.003 5
Avg. Active Threads Per Warp 31.990 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.430 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 46.018 % 0.004 5
Achieved Active Warps Per SM 29.452 warp 0.001 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (46.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 3574181.48 μs
Device Time 6399055.45 μs
Self CPU Time 3051.16 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3571130.32 μs
Device Time 6399055.45 μs
Self CPU Time 4192.77 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3566937.55 μs
Device Time 6399055.45 μs
Self CPU Time 8635.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 395270.08 μs
Device Time 5102183.27 μs
Self CPU Time 103378.14 μs
Self Device Time 5102183.27 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 7111143.00 μs
Device Time 61392.15 μs
Self CPU Time 7111143.00 μs
Self Device Time 61392.15 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3373053.44 μs
Self CPU Time 0.00 μs
Self Device Time 3373053.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::add_
CPU Time 3160548.03 μs
Device Time 1296872.19 μs
Self CPU Time 7940.10 μs
Self Device Time 1296872.19 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45319 warnings generated when compiling for host.
Suppressed 45344 warnings (45297 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:9:35 bugprone-macro-parentheses
9 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:10:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
10 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:22:5: warning: 2 adjacent parameters of 'efficient_fused_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:22:9: note: the first parameter in the range is 'N'
22 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:22:16: note: the last parameter in the range is 'C'
22 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:22:33: warning: 3 adjacent parameters of 'efficient_fused_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int N, int C, int D, int H, int W,
| ^~~~~~
23 | int groups, float eps
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:22:37: note: the first parameter in the range is 'W'
22 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:23:23: note: the last parameter in the range is 'eps'
23 | int groups, float eps
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:23:17: note: 'int' and 'float' may be implicitly converted
23 | int groups, float eps
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:25:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int n = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:26:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int g = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:32:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:33:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | int blockSize = blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:66:9: warning: Value stored to 'local_sum' is never read [clang-analyzer-deadcode.DeadStores]
66 | local_sum = warp_sums[tid];
| ^ ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:66:9: note: Value stored to 'local_sum' is never read
66 | local_sum = warp_sums[tid];
| ^ ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:67:9: warning: Value stored to 'local_sumsq' is never read [clang-analyzer-deadcode.DeadStores]
67 | local_sumsq = warp_sumsq[tid];
| ^ ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:67:9: note: Value stored to 'local_sumsq' is never read
67 | local_sumsq = warp_sumsq[tid];
| ^ ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:82:33: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
82 | float mean = warp_sums[0] / group_elements;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:83:33: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
83 | float var = warp_sumsq[0] / group_elements - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:103:5: warning: 2 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
103 | int padding,
| ^~~~~~~~~~~~
104 | int groups,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:103:9: note: the first parameter in the range is 'padding'
103 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:104:9: note: the last parameter in the range is 'groups'
104 | int groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:106:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
106 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:108:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
108 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:109:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
109 | torch::Tensor group_norm_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:120:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
120 | int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:121:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
121 | int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:122:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
122 | int D = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:123:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
123 | int H = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:124:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | int W = x.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:128:30: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
128 | size_t shared_mem_size = 2 * (threads/32) * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:128:30: note: make conversion explicit to silence this warning
6 | size_t shared_mem_size = 2 * (threads/32) * sizeof(float);
| ^~~~~~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s1_efficient_fused_kernel/base/base.cu:128:30: note: perform multiplication in a wider type
128 | size_t shared_mem_size = 2 * (threads/32) * sizeof(float);
| ^
| static_cast<long>( )