← Back to Leaderboard

The AI CUDA Engineer 👷

60_ConvTranspose3d_Swish_GroupNorm_HardSwishfused_vec_gridstride_base

Level 2 • Task 60
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    groups: int,
    eps: float,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    group_norm_weight: torch.Tensor,
    group_norm_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D transposed convolution, Swish activation, group normalization and HardSwish activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride of the transposed convolution
        padding (int): Padding of the transposed convolution
        groups (int): Number of groups for group normalization
        eps (float): Epsilon value for group normalization
        conv_transpose (torch.Tensor): Transposed convolution weight tensor
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        group_norm_weight (torch.Tensor): Weight tensor for group normalization
        group_norm_bias (torch.Tensor): Bias tensor for group normalization

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv_transpose3d(
        x, conv_transpose, bias=conv_transpose_bias, stride=stride, padding=padding
    )
    x = torch.sigmoid(x) * x  # Swish activation
    x = F.group_norm(
        x, num_groups=groups, weight=group_norm_weight, bias=group_norm_bias, eps=eps
    )
    x = F.hardswish(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation,
    group normalization, and then HardSwish activation.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, stride, padding, groups, eps
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding
        )
        self.conv_transpose_parameter = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)
        gn = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        self.group_norm_weight = nn.Parameter(gn.weight)
        self.group_norm_bias = nn.Parameter(gn.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x, stride, padding, groups, eps, fn=module_fn):
        return fn(
            x,
            stride,
            padding,
            groups,
            eps,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.group_norm_weight,
            self.group_norm_bias,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        groups,
        eps,
    ]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, applies Swish activation, 
    group normalization, and then HardSwish activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups, eps, bias=True):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
        self.group_norm = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps)
        # Add noise to group norm bias to match functional implementation
        self.group_norm.bias = nn.Parameter(self.group_norm.bias + torch.randn(out_channels) * 0.02)

    def forward(self, x):
        x = self.conv_transpose(x)
        x = torch.sigmoid(x) * x  # Swish activation
        x = self.group_norm(x)
        x = torch.nn.functional.hardswish(x)  # HardSwish activation
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
groups = 4
eps = 1e-5

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, groups, eps]

Kernel Information

Related Kernels (Level 2, Task 60 • 60_ConvTranspose3d_Swish_GroupNorm_HardSwish)

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <vector>

#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

// This fused kernel combines vectorized memory accesses (float4 loads/stores) with grid-stride loops
// to handle arbitrary group sizes. It fuses Swish activation, Group Normalization (with warp-level reduction),
// and HardSwish activation in two phases: first, a reduction phase to compute mean/variance using vectorized loads
// where possible; second, a normalization and activation phase that re-computes Swish and applies the affine transform.

__global__ void fused_vec_gridstride_kernel(
    const float* __restrict__ input,
    float* __restrict__ output,
    const float* __restrict__ gamma,
    const float* __restrict__ beta,
    int N, int C, int D, int H, int W,
    int groups, float eps
) {
    // Each block processes one group from one sample
    int n = blockIdx.x;
    int g = blockIdx.y;

    int channels_per_group = C / groups;
    int group_elements = channels_per_group * D * H * W;
    int base = n * (C * D * H * W) + g * group_elements;

    const int VECTOR_SIZE = 4;
    int aligned_elements = (group_elements / VECTOR_SIZE) * VECTOR_SIZE;  // number of elements that can be processed vectorized

    int tid = threadIdx.x;
    int blockSize = blockDim.x;

    // Phase 1: Compute partial sums and sums-of-squares for the Swish activated values
    float local_sum = 0.0f;
    float local_sumsq = 0.0f;

    // Use vectorized loads for the aligned portion
    for (int i = tid * VECTOR_SIZE; i < aligned_elements; i += blockSize * VECTOR_SIZE) {
        int idx = base + i;
        // Load four consecutive floats assuming alignment
        float4 vec = *reinterpret_cast<const float4*>(&input[idx]);
        float x0 = vec.x, x1 = vec.y, x2 = vec.z, x3 = vec.w;
        float sw0 = x0 / (1.f + expf(-x0));
        float sw1 = x1 / (1.f + expf(-x1));
        float sw2 = x2 / (1.f + expf(-x2));
        float sw3 = x3 / (1.f + expf(-x3));
        local_sum += sw0 + sw1 + sw2 + sw3;
        local_sumsq += sw0 * sw0 + sw1 * sw1 + sw2 * sw2 + sw3 * sw3;
    }

    // Handle any tail elements that are not vectorized
    for (int i = aligned_elements + tid; i < group_elements; i += blockSize) {
        int idx = base + i;
        float x = __ldg(&input[idx]);
        float sw = x / (1.f + expf(-x));
        local_sum += sw;
        local_sumsq += sw * sw;
    }

    // Warp-level reduction using shuffles
    unsigned int mask = 0xffffffff;
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        local_sum += __shfl_down_sync(mask, local_sum, offset);
        local_sumsq += __shfl_down_sync(mask, local_sumsq, offset);
    }

    // Shared memory for storing warp-level partial results
    extern __shared__ float shared[]; // shared memory: first half for sums, second half for sumsq
    int numWarps = (blockSize + warpSize - 1) / warpSize;
    float* warpSums = shared;
    float* warpSumsSq = shared + numWarps;

    int warpId = tid / warpSize;
    int laneId = tid % warpSize;
    if(laneId == 0) {
        warpSums[warpId] = local_sum;
        warpSumsSq[warpId] = local_sumsq;
    }
    __syncthreads();

    float total_sum = 0.f;
    float total_sumsq = 0.f;
    if(tid < numWarps) {
        total_sum = warpSums[tid];
        total_sumsq = warpSumsSq[tid];
    }
    __syncthreads();
    if(tid == 0) {
        for (int i = 1; i < numWarps; i++) {
            total_sum += warpSums[i];
            total_sumsq += warpSumsSq[i];
        }
        warpSums[0] = total_sum;  // store final reduction in shared memory
        warpSumsSq[0] = total_sumsq;
    }
    __syncthreads();

    total_sum = warpSums[0];
    total_sumsq = warpSumsSq[0];
    float mean = total_sum / group_elements;
    float var = total_sumsq / group_elements - mean * mean;
    float inv_std = rsqrtf(var + eps);

    // Phase 2: Recompute the activation and apply normalization + HardSwish
    // Use vectorized stores for the aligned part
    for (int i = tid * VECTOR_SIZE; i < aligned_elements; i += blockSize * VECTOR_SIZE) {
        int idx = base + i;
        float4 in_vec = *reinterpret_cast<const float4*>(&input[idx]);
        float4 out_vec;
        #pragma unroll
        for (int j = 0; j < VECTOR_SIZE; j++) {
            float x = ((&in_vec.x)[j]);
            float sw = x / (1.f + expf(-x));
            int local_channel = (i + j) / (D * H * W);
            int global_channel = g * channels_per_group + local_channel;
            float norm = (sw - mean) * inv_std;
            float y = norm * __ldg(&gamma[global_channel]) + __ldg(&beta[global_channel]);
            float hs = y * fminf(fmaxf(y + 3.f, 0.f), 6.f) / 6.f;
            (&out_vec.x)[j] = hs;
        }
        *reinterpret_cast<float4*>(&output[idx]) = out_vec;
    }

    // Process remaining tail elements
    for (int i = aligned_elements + tid; i < group_elements; i += blockSize) {
        int idx = base + i;
        float x = __ldg(&input[idx]);
        float sw = x / (1.f + expf(-x));
        int local_channel = i / (D * H * W);
        int global_channel = g * channels_per_group + local_channel;
        float norm = (sw - mean) * inv_std;
        float y = norm * __ldg(&gamma[global_channel]) + __ldg(&beta[global_channel]);
        output[idx] = y * fminf(fmaxf(y + 3.f, 0.f), 6.f) / 6.f;
    }
}

// The forward function first applies a conv_transpose3d then launches the fused kernel
torch::Tensor forward(
    torch::Tensor x,
    int stride,
    int padding,
    int groups,
    float eps,
    torch::Tensor conv_transpose,
    torch::Tensor conv_transpose_bias,
    torch::Tensor group_norm_weight,
    torch::Tensor group_norm_bias
) {
    CHECK_INPUT(x);
    CHECK_INPUT(conv_transpose);
    CHECK_INPUT(conv_transpose_bias);
    CHECK_INPUT(group_norm_weight);
    CHECK_INPUT(group_norm_bias);

    // Perform the transposed convolution
    x = torch::conv_transpose3d(x, conv_transpose, conv_transpose_bias, stride, padding);
    torch::Tensor output = torch::empty_like(x);

    int N = x.size(0);
    int C = x.size(1);
    int D = x.size(2);
    int H = x.size(3);
    int W = x.size(4);

    // Each block processes one (sample, group) pair
    dim3 grid(N, groups);
    int threads = 256;
    int numWarps = (threads + 31) / 32;
    size_t shared_mem = 2 * numWarps * sizeof(float);

    fused_vec_gridstride_kernel<<<grid, threads, shared_mem>>>(
        x.data_ptr<float>(),
        output.data_ptr<float>(),
        group_norm_weight.data_ptr<float>(),
        group_norm_bias.data_ptr<float>(),
        N, C, D, H, W,
        groups, eps
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused vectorized and grid-stride kernel for Swish, GroupNorm, and HardSwish");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.450 inst/cycle 0.000 5
Executed Ipc Elapsed 1.418 inst/cycle 0.000 5
Issue Slots Busy 36.318 % 0.001 5
Issued Ipc Active 1.450 inst/cycle 0.000 5
SM Busy 36.318 % 0.001 5
Memory Throughput 2475401238144.612 byte/second 30102299843454754816.000 5
Mem Busy 40.378 % 0.008 5
Max Bandwidth 73.844 % 0.028 5
L1/TEX Hit Rate 16.732 % 0.001 5
L2 Hit Rate 35.658 % 0.000 5
Mem Pipes Busy 8.434 % 0.000 5
Warp Cycles Per Issued Instruction 20.762 cycle 0.001 5
Warp Cycles Per Executed Instruction 20.762 cycle 0.001 5
Avg. Active Threads Per Warp 31.990 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.220 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 47.172 % 0.000 5
Achieved Active Warps Per SM 30.190 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (25.9%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (47.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 3770321.47 μs
Device Time 6752810.09 μs
Self CPU Time 3173.17 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3767148.29 μs
Device Time 6752810.09 μs
Self CPU Time 4449.00 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3762699.29 μs
Device Time 6752810.09 μs
Self CPU Time 9234.59 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 406661.07 μs
Device Time 5380651.77 μs
Self CPU Time 103036.97 μs
Self Device Time 5380651.77 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6684988.92 μs
Device Time 62101.50 μs
Self CPU Time 6684988.92 μs
Self Device Time 62101.50 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3554116.68 μs
Self CPU Time 0.00 μs
Self Device Time 3554116.68 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::add_
CPU Time 3344170.66 μs
Device Time 1372158.32 μs
Self CPU Time 8375.91 μs
Self Device Time 1372158.32 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45317 warnings generated when compiling for host.
Suppressed 45344 warnings (45297 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:9:35 bugprone-macro-parentheses
9 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:10:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
10 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:23:5: warning: 2 adjacent parameters of 'fused_vec_gridstride_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
23 | int N, int C, int D, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:23:9: note: the first parameter in the range is 'N'
23 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:23:16: note: the last parameter in the range is 'C'
23 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:23:33: warning: 3 adjacent parameters of 'fused_vec_gridstride_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
23 | int N, int C, int D, int H, int W,
| ^~~~~~
24 | int groups, float eps
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:23:37: note: the first parameter in the range is 'W'
23 | int N, int C, int D, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:24:23: note: the last parameter in the range is 'eps'
24 | int groups, float eps
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:24:17: note: 'int' and 'float' may be implicitly converted
24 | int groups, float eps
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:27:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int n = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:28:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int g = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:37:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:38:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | int blockSize = blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:107:30: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
107 | float mean = total_sum / group_elements;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:108:31: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
108 | float var = total_sumsq / group_elements - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:148:5: warning: 2 adjacent parameters of 'forward' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
148 | int padding,
| ^~~~~~~~~~~~
149 | int groups,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:148:9: note: the first parameter in the range is 'padding'
148 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:149:9: note: the last parameter in the range is 'groups'
149 | int groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:151:19: warning: the parameter 'conv_transpose' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
151 | torch::Tensor conv_transpose,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:153:19: warning: the parameter 'group_norm_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
153 | torch::Tensor group_norm_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:154:19: warning: the parameter 'group_norm_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
154 | torch::Tensor group_norm_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:166:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
166 | int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:167:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
167 | int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:168:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
168 | int D = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:169:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
169 | int H = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:170:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
170 | int W = x.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:176:25: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
176 | size_t shared_mem = 2 * numWarps * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:176:25: note: make conversion explicit to silence this warning
7 | size_t shared_mem = 2 * numWarps * sizeof(float);
| ^~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_60/b8_s3_fused_vec_gridstride/base/base.cu:176:25: note: perform multiplication in a wider type
176 | size_t shared_mem = 2 * numWarps * sizeof(float);
| ^
| static_cast<long>( )