← Back to Leaderboard

The AI CUDA Engineer 👷

67_Conv2d_GELU_GlobalAvgPoolmodular_fused_conv_gelu_pool_base

Level 2 • Task 67
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies convolution, GELU activation, and global average pooling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Convolution bias tensor of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels)
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = F.gelu(x)
    x = F.adaptive_avg_pool2d(x, 1)
    x = x.squeeze(-1).squeeze(-1)
    return x


class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """

    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(conv.bias)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias)


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """
    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)

    def forward(self, x):
        """
        Args:
            x: Input tensor of shape (batch_size, in_channels, height, width)
        Returns:
            Output tensor of shape (batch_size, out_channels)
        """
        x = self.conv(x)
        x = torch.nn.functional.gelu(x)
        x = torch.nn.functional.adaptive_avg_pool2d(x, 1)
        x = x.squeeze(-1).squeeze(-1)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

Related Kernels (Level 2, Task 67 • 67_Conv2d_GELU_GlobalAvgPool)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>

#define KERNEL_SIZE 3
#define WARP_SIZE 32

// Modular device function: GELU activation
__device__ inline float gelu_activate(float x) {
    return 0.5f * x * (1.f + erff(x / 1.41421356f));
}

// Modular device function: Compute 3x3 convolution for one output pixel
__device__ float compute_conv3x3(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int n,
    const int c_out,
    const int row,
    const int col
) {
    float sum = 0.0f;
    
    // Loop over input channels
    for (int c = 0; c < in_channels; c++) {
        // Calculate base indices
        int input_base = ((n * in_channels + c) * in_h);
        int weight_base = ((c_out * in_channels + c) * KERNEL_SIZE * KERNEL_SIZE);
        
        // Unrolled 3x3 convolution
        int idx = (input_base + row) * in_w + col;
        sum += input[idx] * weight[weight_base + 0];
        sum += input[idx + 1] * weight[weight_base + 1];
        sum += input[idx + 2] * weight[weight_base + 2];
        
        idx += in_w;
        sum += input[idx] * weight[weight_base + 3];
        sum += input[idx + 1] * weight[weight_base + 4];
        sum += input[idx + 2] * weight[weight_base + 5];
        
        idx += in_w;
        sum += input[idx] * weight[weight_base + 6];
        sum += input[idx + 1] * weight[weight_base + 7];
        sum += input[idx + 2] * weight[weight_base + 8];
    }
    return sum;
}

// Modular device function: Process one pixel by applying convolution, bias addition, and GELU activation
__device__ float process_pixel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int n,
    const int c_out,
    const int row,
    const int col
) {
    float conv_val = compute_conv3x3(input, weight, in_channels, in_h, in_w, n, c_out, row, col);
    conv_val += bias[c_out];
    return gelu_activate(conv_val);
}

// Modular device function: Warp-level reduction using shuffle
__device__ float warp_reduce_sum(float val) {
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

// Fused kernel: performs convolution, activation, and global average pooling in one pass
extern "C" __global__ void conv2d_gelu_pool_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int N,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int out_channels,
    const int out_h,
    const int out_w
) {
    // Each block handles one (n, c_out) pair
    int n = blockIdx.y;
    int c_out = blockIdx.x;
    
    int total_pixels = out_h * out_w;
    float local_sum = 0.0f;
    
    // Grid-stride loop over spatial dimensions
    for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
        int row = idx / out_w;
        int col = idx % out_w;
        local_sum += process_pixel(input, weight, bias, in_channels, in_h, in_w, n, c_out, row, col);
    }
    
    // Warp-level reduction
    local_sum = warp_reduce_sum(local_sum);
    
    // Shared memory reduction across warps
    __shared__ float shared[32];  // Assumes a maximum of 32 warps per block
    int lane = threadIdx.x & (WARP_SIZE - 1);
    int warp_id = threadIdx.x / WARP_SIZE;
    if (lane == 0) {
        shared[warp_id] = local_sum;
    }
    __syncthreads();
    
    float block_sum = 0.0f;
    int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
    if (threadIdx.x < num_warps) {
        block_sum = shared[threadIdx.x];
    }
    block_sum = warp_reduce_sum(block_sum);
    
    // First thread writes the final result (global average pooling)
    if (threadIdx.x == 0) {
        output[n * out_channels + c_out] = block_sum / float(total_pixels);
    }
}

// Host function to launch the fused kernel
torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias
) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");
    
    int N = input.size(0);
    int in_channels = input.size(1);
    int in_h = input.size(2);
    int in_w = input.size(3);
    int out_channels = conv_weight.size(0);
    int out_h = in_h - 2;
    int out_w = in_w - 2;
    
    auto options = torch::TensorOptions().dtype(input.dtype()).device(input.device());
    auto final_output = torch::empty({N, out_channels}, options);
    
    // Launch kernel with grid dimensions (out_channels, N) and 256 threads per block
    dim3 grid(out_channels, N);
    int threads = 256;
    
    conv2d_gelu_pool_kernel<<<grid, threads>>>(
        input.data_ptr<float>(),
        conv_weight.data_ptr<float>(),
        conv_bias.data_ptr<float>(),
        final_output.data_ptr<float>(),
        N, in_channels, in_h, in_w,
        out_channels, out_h, out_w
    );
    
    return final_output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Modular Fused Conv2d + GELU + GlobalAvgPool");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.834 inst/cycle 0.000 5
Executed Ipc Elapsed 1.620 inst/cycle 0.000 5
Issue Slots Busy 46.116 % 0.041 5
Issued Ipc Active 1.844 inst/cycle 0.000 5
SM Busy 46.116 % 0.041 5
Memory Throughput 44863439608.830 byte/second 42828868709921784.000 5
Mem Busy 68.278 % 0.066 5
Max Bandwidth 52.134 % 0.052 5
L1/TEX Hit Rate 91.764 % 0.001 5
L2 Hit Rate 84.940 % 0.240 5
Mem Pipes Busy 46.970 % 0.032 5
Warp Cycles Per Issued Instruction 29.520 cycle 0.007 5
Warp Cycles Per Executed Instruction 29.630 cycle 0.007 5
Avg. Active Threads Per Warp 31.070 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.080 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 85.306 % 0.071 5
Achieved Active Warps Per SM 54.594 warp 0.029 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (21.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (85.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 343499.31 μs
Device Time 78.82 μs
Self CPU Time 45.30 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 343454.01 μs
Device Time 78.82 μs
Self CPU Time 99.74 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 343024.46 μs
Device Time 0.00 μs
Self CPU Time 98.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 342541.14 μs
Device Time 0.00 μs
Self CPU Time 342541.14 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 514382.86 μs
Device Time 18184.94 μs
Self CPU Time 514382.86 μs
Self Device Time 18184.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_gelu_pool_kernel
CPU Time 0.00 μs
Device Time 176291.64 μs
Self CPU Time 0.00 μs
Self Device Time 176291.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 37428.73 μs
Device Time 33454.47 μs
Self CPU Time 37428.73 μs
Self Device Time 33454.47 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 146426.20 μs
Device Time 503738.53 μs
Self CPU Time 10909.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 135517.95 μs
Device Time 503738.53 μs
Self CPU Time 12783.04 μs
Self Device Time 503738.53 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 503816.96 μs
Self CPU Time 0.00 μs
Self Device Time 503816.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45295 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:20:5 bugprone-easily-swappable-parameters
20 | const int in_w,
| ^~~~~~~~~~~~~~~
21 | const int n,
| ~~~~~~~~~~~~
22 | const int c_out,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:20:15: note: the first parameter in the range is 'in_w'
20 | const int in_w,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:22:15: note: the last parameter in the range is 'c_out'
22 | const int c_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:56:5: warning: 2 adjacent parameters of 'process_pixel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
56 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
57 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:56:31: note: the first parameter in the range is 'weight'
56 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:57:31: note: the last parameter in the range is 'bias'
57 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:85:5: warning: 2 adjacent parameters of 'conv2d_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
85 | const int N,
| ^~~~~~~~~~~~
86 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:85:15: note: the first parameter in the range is 'N'
85 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:86:15: note: the last parameter in the range is 'in_channels'
86 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:88:5: warning: 3 adjacent parameters of 'conv2d_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
88 | const int in_w,
| ^~~~~~~~~~~~~~~
89 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~~
90 | const int out_h,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:88:15: note: the first parameter in the range is 'in_w'
88 | const int in_w,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:90:15: note: the last parameter in the range is 'out_h'
90 | const int out_h,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:94:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | int n = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:95:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int c_out = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:101:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:101:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:112:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | int lane = threadIdx.x & (WARP_SIZE - 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:113:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | int warp_id = threadIdx.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:120:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
120 | int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:134:19: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
134 | torch::Tensor input,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:135:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
135 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:136:19: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
136 | torch::Tensor conv_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:142:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
142 | int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:143:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
143 | int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:144:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
144 | int in_h = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:145:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
145 | int in_w = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b6_s1_modular_fused_conv_gelu_pool/base/base.cu:146:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
146 | int out_channels = conv_weight.size(0);
| ^