← Back to Leaderboard

The AI CUDA Engineer 👷

67_Conv2d_GELU_GlobalAvgPoolfused_shared_base

Level 2 • Task 67
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies convolution, GELU activation, and global average pooling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Convolution bias tensor of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels)
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = F.gelu(x)
    x = F.adaptive_avg_pool2d(x, 1)
    x = x.squeeze(-1).squeeze(-1)
    return x


class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """

    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(conv.bias)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias)


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """
    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)

    def forward(self, x):
        """
        Args:
            x: Input tensor of shape (batch_size, in_channels, height, width)
        Returns:
            Output tensor of shape (batch_size, out_channels)
        """
        x = self.conv(x)
        x = torch.nn.functional.gelu(x)
        x = torch.nn.functional.adaptive_avg_pool2d(x, 1)
        x = x.squeeze(-1).squeeze(-1)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

Related Kernels (Level 2, Task 67 • 67_Conv2d_GELU_GlobalAvgPool)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>

#define KERNEL_SIZE 3

// GELU activation function
__device__ inline float gelu_activate(float x) {
    return 0.5f * x * (1.f + erff(x / 1.41421356f));
}

// Warp-level reduction using shuffle intrinsics
__device__ inline float warp_reduce_sum(float val) {
    // Assuming warp size is 32
    for (int offset = 16; offset > 0; offset /= 2)
        val += __shfl_down_sync(0xffffffff, val, offset);
    return val;
}

// Compute convolution for a fixed 3x3 kernel using unrolling and shared weight
__device__ inline float compute_conv_unrolled_shared(
    const float* __restrict__ input,
    const float* __restrict__ sweight,
    const int n,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int row,
    const int col
) {
    float sum = 0.0f;
    // Loop over input channels with unrolling for a 3x3 kernel
    #pragma unroll
    for (int c = 0; c < in_channels; c++) {
        int input_channel_offset = n * in_channels * in_h * in_w + c * in_h * in_w;
        int weight_channel_offset = c * (KERNEL_SIZE * KERNEL_SIZE);
        // Unrolled 3x3 convolution
        sum += __ldg(&input[input_channel_offset + (row + 0) * in_w + (col + 0)]) * sweight[weight_channel_offset + 0];
        sum += __ldg(&input[input_channel_offset + (row + 0) * in_w + (col + 1)]) * sweight[weight_channel_offset + 1];
        sum += __ldg(&input[input_channel_offset + (row + 0) * in_w + (col + 2)]) * sweight[weight_channel_offset + 2];

        sum += __ldg(&input[input_channel_offset + (row + 1) * in_w + (col + 0)]) * sweight[weight_channel_offset + 3];
        sum += __ldg(&input[input_channel_offset + (row + 1) * in_w + (col + 1)]) * sweight[weight_channel_offset + 4];
        sum += __ldg(&input[input_channel_offset + (row + 1) * in_w + (col + 2)]) * sweight[weight_channel_offset + 5];

        sum += __ldg(&input[input_channel_offset + (row + 2) * in_w + (col + 0)]) * sweight[weight_channel_offset + 6];
        sum += __ldg(&input[input_channel_offset + (row + 2) * in_w + (col + 1)]) * sweight[weight_channel_offset + 7];
        sum += __ldg(&input[input_channel_offset + (row + 2) * in_w + (col + 2)]) * sweight[weight_channel_offset + 8];
    }
    return sum;
}

// Fused kernel: convolution, bias addition, GELU activation, and global average pooling
// Each block computes one (n, c_out) pair over the convolution output spatial dimensions (out_h x out_w).
extern "C" __global__ void fused_conv_gelu_pool_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int N,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int out_channels,
    const int out_h,
    const int out_w
) {
    // Block assignment: blockIdx.y -> batch index (n), blockIdx.x -> output channel (c_out)
    const int n = blockIdx.y;
    const int c_out = blockIdx.x;
    const int total_pixels = out_h * out_w;

    // Shared memory for loading the filter weights for the current output channel.
    // Size: in_channels * KERNEL_SIZE * KERNEL_SIZE floats.
    extern __shared__ float sweight[];
    const int numWeights = in_channels * KERNEL_SIZE * KERNEL_SIZE;

    // Load weights from global memory into shared memory once per block
    for (int i = threadIdx.x; i < numWeights; i += blockDim.x) {
        sweight[i] = weight[c_out * numWeights + i];
    }
    __syncthreads();

    float local_sum = 0.0f;

    // Each thread processes multiple output pixels using a grid-stride loop
    for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
        int row = idx / out_w;
        int col = idx % out_w;
        float conv_val = compute_conv_unrolled_shared(input, sweight, n, in_channels, in_h, in_w, row, col);
        conv_val += bias[c_out];
        conv_val = gelu_activate(conv_val);
        local_sum += conv_val;
    }

    // Warp-level reduction
    local_sum = warp_reduce_sum(local_sum);

    // Shared memory for block-level reduction among warps
    __shared__ float shared_sum[32]; // Supports up to 32 warps per block
    int lane = threadIdx.x & 31;
    int warpId = threadIdx.x >> 5;
    if (lane == 0) {
        shared_sum[warpId] = local_sum;
    }
    __syncthreads();

    float block_sum = 0.0f;
    int numWarps = (blockDim.x + 31) >> 5;
    if (threadIdx.x < numWarps) {
        block_sum = shared_sum[threadIdx.x];
    }
    block_sum = warp_reduce_sum(block_sum);

    // Thread 0 writes the final averaged result to global memory
    if (threadIdx.x == 0) {
        output[n * out_channels + c_out] = block_sum / float(total_pixels);
    }
}

// Host function that launches the fused kernel
torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias
) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");

    const int N = input.size(0);
    const int in_channels = input.size(1);
    const int in_h = input.size(2);
    const int in_w = input.size(3);
    const int out_channels = conv_weight.size(0);
    // For a 3x3 filter, output dimensions are (in_h - 2, in_w - 2)
    const int out_h = in_h - 2;
    const int out_w = in_w - 2;

    auto options = torch::TensorOptions().dtype(input.dtype()).device(input.device());
    // Final output has shape (N, out_channels) after global average pooling
    auto final_output = torch::empty({N, out_channels}, options);

    // Launch the fused kernel with a 2D grid: (out_channels, N)
    dim3 grid(out_channels, N);
    const int threads = 256;
    // Shared memory size: in_channels * 3 * 3 * sizeof(float)
    size_t shared_mem = in_channels * KERNEL_SIZE * KERNEL_SIZE * sizeof(float);

    fused_conv_gelu_pool_kernel<<<grid, threads, shared_mem>>>(
        input.data_ptr<float>(),
        conv_weight.data_ptr<float>(),
        conv_bias.data_ptr<float>(),
        final_output.data_ptr<float>(),
        N, in_channels, in_h, in_w,
        out_channels, out_h, out_w
    );

    return final_output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused Conv2d + GELU + GlobalAvgPool with Shared Weight Tiling");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.366 inst/cycle 0.000 5
Executed Ipc Elapsed 2.116 inst/cycle 0.000 5
Issue Slots Busy 59.262 % 0.046 5
Issued Ipc Active 2.368 inst/cycle 0.000 5
SM Busy 59.262 % 0.046 5
Memory Throughput 50826967940.462 byte/second 38562498585386344.000 5
Mem Busy 67.174 % 0.072 5
Max Bandwidth 45.006 % 0.033 5
L1/TEX Hit Rate 90.094 % 0.000 5
L2 Hit Rate 86.082 % 0.362 5
Mem Pipes Busy 42.592 % 0.029 5
Warp Cycles Per Issued Instruction 22.428 cycle 0.001 5
Warp Cycles Per Executed Instruction 22.484 cycle 0.001 5
Avg. Active Threads Per Warp 31.050 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.900 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 25.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 83.224 % 0.159 5
Achieved Active Warps Per SM 53.260 warp 0.064 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (38.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (83.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 407940.31 μs
Device Time 81.18 μs
Self CPU Time 45.18 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 407895.13 μs
Device Time 81.18 μs
Self CPU Time 96.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 407447.73 μs
Device Time 0.00 μs
Self CPU Time 116.38 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 406973.89 μs
Device Time 0.00 μs
Self CPU Time 406973.89 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 574083.73 μs
Device Time 18491.46 μs
Self CPU Time 574083.73 μs
Self Device Time 18491.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
fused_conv_gelu_pool_kernel
CPU Time 0.00 μs
Device Time 179166.38 μs
Self CPU Time 0.00 μs
Self Device Time 179166.38 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 15629.20 μs
Device Time 36752.11 μs
Self CPU Time 15629.20 μs
Self Device Time 36752.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 149223.58 μs
Device Time 550869.71 μs
Self CPU Time 11804.02 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 137421.35 μs
Device Time 550869.71 μs
Self CPU Time 14096.08 μs
Self Device Time 550869.71 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 550869.71 μs
Self CPU Time 0.00 μs
Self Device Time 550869.71 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:57:5 bugprone-easily-swappable-parameters
57 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
58 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
59 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:57:31: note: the first parameter in the range is 'input'
57 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:59:31: note: the last parameter in the range is 'bias'
59 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:61:5: warning: 2 adjacent parameters of 'fused_conv_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
61 | const int N,
| ^~~~~~~~~~~~
62 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:61:15: note: the first parameter in the range is 'N'
61 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:62:15: note: the last parameter in the range is 'in_channels'
62 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:64:5: warning: 3 adjacent parameters of 'fused_conv_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
64 | const int in_w,
| ^~~~~~~~~~~~~~~
65 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~~
66 | const int out_h,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:64:15: note: the first parameter in the range is 'in_w'
64 | const int in_w,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:66:15: note: the last parameter in the range is 'out_h'
66 | const int out_h,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:70:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
70 | const int n = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:71:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | const int c_out = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:80:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | for (int i = threadIdx.x; i < numWeights; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:80:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | for (int i = threadIdx.x; i < numWeights; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:88:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
88 | for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:88:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
88 | for (int idx = threadIdx.x; idx < total_pixels; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:102:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int lane = threadIdx.x & 31;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:103:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int warpId = threadIdx.x >> 5;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:110:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | int numWarps = (blockDim.x + 31) >> 5;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:124:19: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
124 | torch::Tensor input,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:125:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
125 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:126:19: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
126 | torch::Tensor conv_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:132:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
132 | const int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:133:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | const int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:134:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
134 | const int in_h = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:135:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
135 | const int in_w = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:136:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | const int out_channels = conv_weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:149:25: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
149 | size_t shared_mem = in_channels * KERNEL_SIZE * KERNEL_SIZE * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:149:25: note: make conversion explicit to silence this warning
5 | size_t shared_mem = in_channels * KERNEL_SIZE * KERNEL_SIZE * sizeof(float);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b8_s3_fused_shared/base/base.cu:149:25: note: perform multiplication in a wider type
149 | size_t shared_mem = in_channels * KERNEL_SIZE * KERNEL_SIZE * sizeof(float);
| ^~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<long>( )