← Back to Leaderboard

The AI CUDA Engineer 👷

67_Conv2d_GELU_GlobalAvgPooloptimized_reduction_conv_gelu_pool_base

Level 2 • Task 67
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies convolution, GELU activation, and global average pooling.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Convolution bias tensor of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels)
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = F.gelu(x)
    x = F.adaptive_avg_pool2d(x, 1)
    x = x.squeeze(-1).squeeze(-1)
    return x


class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """

    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(conv.bias)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias)


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a convolution, applies GELU, and then performs global average pooling.
    """
    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)

    def forward(self, x):
        """
        Args:
            x: Input tensor of shape (batch_size, in_channels, height, width)
        Returns:
            Output tensor of shape (batch_size, out_channels)
        """
        x = self.conv(x)
        x = torch.nn.functional.gelu(x)
        x = torch.nn.functional.adaptive_avg_pool2d(x, 1)
        x = x.squeeze(-1).squeeze(-1)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

Related Kernels (Level 2, Task 67 • 67_Conv2d_GELU_GlobalAvgPool)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>

#define KERNEL_SIZE 3
#define BLOCK_SIZE 256
#define WARP_SIZE 32
#define NUM_WARPS (BLOCK_SIZE/WARP_SIZE)

__device__ __forceinline__ float gelu_activate(float x) {
    return 0.5f * x * (1.f + erff(x / 1.41421356f));
}

__device__ __forceinline__ float4 load_vector(const float* ptr) {
    return *reinterpret_cast<const float4*>(ptr);
}

__device__ __forceinline__ float reduce_warp(float val) {
    #pragma unroll
    for (int offset = WARP_SIZE/2; offset > 0; offset >>= 1) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

__device__ __forceinline__ float compute_conv_element(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int n,
    const int c_out,
    const int row,
    const int col
) {
    float sum = 0.0f;
    
    const int input_base = ((n * in_channels) * in_h + row) * in_w + col;
    const int weight_base = c_out * in_channels * KERNEL_SIZE * KERNEL_SIZE;
    
    #pragma unroll
    for (int c_in = 0; c_in < in_channels; ++c_in) {
        const float* in_ptr = input + input_base + c_in * in_h * in_w;
        const float* w_ptr = weight + weight_base + c_in * KERNEL_SIZE * KERNEL_SIZE;
        
        #pragma unroll
        for (int kh = 0; kh < KERNEL_SIZE; ++kh) {
            #pragma unroll
            for (int kw = 0; kw < KERNEL_SIZE; ++kw) {
                sum += in_ptr[kh * in_w + kw] * w_ptr[kh * KERNEL_SIZE + kw];
            }
        }
    }
    return sum;
}

__global__ void conv2d_gelu_pool_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int N,
    const int in_channels,
    const int in_h,
    const int in_w,
    const int out_channels,
    const int out_h,
    const int out_w
) {
    __shared__ float shared_data[BLOCK_SIZE];
    
    const int n = blockIdx.y;
    const int c_out = blockIdx.x;
    const int tid = threadIdx.x;
    const int lane_id = tid & (WARP_SIZE-1);
    const int warp_id = tid / WARP_SIZE;
    
    float thread_sum = 0.0f;
    const int total_pixels = out_h * out_w;
    const int pixels_per_thread = (total_pixels + BLOCK_SIZE - 1) / BLOCK_SIZE;
    
    #pragma unroll 4
    for (int i = 0; i < pixels_per_thread; ++i) {
        const int pixel_idx = tid + i * BLOCK_SIZE;
        if (pixel_idx < total_pixels) {
            const int row = pixel_idx / out_w;
            const int col = pixel_idx % out_w;
            
            float val = compute_conv_element(
                input, weight, in_channels, in_h, in_w,
                n, c_out, row, col
            );
            val += bias[c_out];
            val = gelu_activate(val);
            thread_sum += val;
        }
    }
    
    thread_sum = reduce_warp(thread_sum);
    
    if (lane_id == 0) {
        shared_data[warp_id] = thread_sum;
    }
    __syncthreads();
    
    if (warp_id == 0) {
        float warp_sum = (lane_id < NUM_WARPS) ? shared_data[lane_id] : 0.0f;
        warp_sum = reduce_warp(warp_sum);
        
        if (lane_id == 0) {
            output[n * out_channels + c_out] = warp_sum / float(total_pixels);
        }
    }
}

torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias
) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");
    
    const int N = input.size(0);
    const int in_channels = input.size(1);
    const int in_h = input.size(2);
    const int in_w = input.size(3);
    const int out_channels = conv_weight.size(0);
    const int out_h = in_h - 2;
    const int out_w = in_w - 2;
    
    auto options = torch::TensorOptions().dtype(input.dtype()).device(input.device());
    auto output = torch::empty({N, out_channels}, options);
    
    dim3 grid(out_channels, N);
    
    conv2d_gelu_pool_kernel<<<grid, BLOCK_SIZE>>>(
        input.data_ptr<float>(),
        conv_weight.data_ptr<float>(),
        conv_bias.data_ptr<float>(),
        output.data_ptr<float>(),
        N, in_channels, in_h, in_w,
        out_channels, out_h, out_w
    );
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized reduction Conv2d + GELU + GlobalAvgPool");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.062 inst/cycle 0.000 5
Executed Ipc Elapsed 1.834 inst/cycle 0.000 5
Issue Slots Busy 51.578 % 0.023 5
Issued Ipc Active 2.062 inst/cycle 0.000 5
SM Busy 51.578 % 0.023 5
Memory Throughput 46813558105.282 byte/second 75339802561982816.000 5
Mem Busy 70.558 % 0.190 5
Max Bandwidth 52.870 % 0.118 5
L1/TEX Hit Rate 91.812 % 0.001 5
L2 Hit Rate 85.230 % 1.723 5
Mem Pipes Busy 48.284 % 0.090 5
Warp Cycles Per Issued Instruction 25.598 cycle 0.001 5
Warp Cycles Per Executed Instruction 25.624 cycle 0.002 5
Avg. Active Threads Per Warp 31.100 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.950 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 82.472 % 0.042 5
Achieved Active Warps Per SM 52.782 warp 0.017 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (30.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (82.3%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 695642.56 μs
Device Time 83.78 μs
Self CPU Time 56.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 695585.91 μs
Device Time 83.78 μs
Self CPU Time 123.36 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 695080.24 μs
Device Time 0.00 μs
Self CPU Time 116.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 689304.34 μs
Device Time 0.00 μs
Self CPU Time 689304.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 590533.63 μs
Device Time 18662.10 μs
Self CPU Time 590533.63 μs
Self Device Time 18662.10 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv2d_gelu_pool_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 198230.81 μs
Self CPU Time 0.00 μs
Self Device Time 198230.81 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 19482.37 μs
Device Time 37228.77 μs
Self CPU Time 19482.37 μs
Self Device Time 37228.77 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 164509.49 μs
Device Time 556415.18 μs
Self CPU Time 12136.67 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 152374.77 μs
Device Time 556415.18 μs
Self CPU Time 14418.02 μs
Self Device Time 556415.18 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 556415.18 μs
Self CPU Time 0.00 μs
Self Device Time 556415.18 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45294 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:28:5 bugprone-easily-swappable-parameters
28 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:28:31: note: the first parameter in the range is 'input'
28 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:29:31: note: the last parameter in the range is 'weight'
29 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:33:5: warning: 2 adjacent parameters of 'compute_conv_element' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
33 | const int n,
| ^~~~~~~~~~~~
34 | const int c_out,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:33:15: note: the first parameter in the range is 'n'
33 | const int n,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:34:15: note: the last parameter in the range is 'c_out'
34 | const int c_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:45:31: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
45 | const float* in_ptr = input + input_base + c_in * in_h * in_w;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:45:52: note: make conversion explicit to silence this warning
5 | const float* in_ptr = input + input_base + c_in * in_h * in_w;
| ^~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:45:52: note: perform multiplication in a wider type
45 | const float* in_ptr = input + input_base + c_in * in_h * in_w;
| ^~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:46:30: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
46 | const float* w_ptr = weight + weight_base + c_in * KERNEL_SIZE * KERNEL_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:46:53: note: make conversion explicit to silence this warning
46 | const float* w_ptr = weight + weight_base + c_in * KERNEL_SIZE * KERNEL_SIZE;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:46:53: note: perform multiplication in a wider type
46 | const float* w_ptr = weight + weight_base + c_in * KERNEL_SIZE * KERNEL_SIZE;
| ^~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:61:5: warning: 2 adjacent parameters of 'conv2d_gelu_pool_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
61 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:61:31: note: the first parameter in the range is 'weight'
61 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:62:31: note: the last parameter in the range is 'bias'
62 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:64:5: warning: 2 adjacent parameters of 'conv2d_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
64 | const int N,
| ^~~~~~~~~~~~
65 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:64:15: note: the first parameter in the range is 'N'
64 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:65:15: note: the last parameter in the range is 'in_channels'
65 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:67:5: warning: 3 adjacent parameters of 'conv2d_gelu_pool_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
67 | const int in_w,
| ^~~~~~~~~~~~~~~
68 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~~
69 | const int out_h,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:67:15: note: the first parameter in the range is 'in_w'
67 | const int in_w,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:69:15: note: the last parameter in the range is 'out_h'
69 | const int out_h,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:74:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int n = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:75:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
75 | const int c_out = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:76:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
76 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:119:19: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
119 | torch::Tensor input,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:120:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
120 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:121:19: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
121 | torch::Tensor conv_bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:127:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | const int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:128:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | const int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:129:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
129 | const int in_h = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:130:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | const int in_w = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_67/b7_s1_optimized_reduction_conv_gelu_pool/base/base.cu:131:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | const int out_channels = conv_weight.size(0);
| ^