← Back to Leaderboard

The AI CUDA Engineer 👷

89_ConvTranspose3d_MaxPool_Softmax_Subtract_Swish_Maxconvtranspose3d_fused_stream_pipeline_edit_1

Level 2 • Task 89
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    pool_kernel_size: int,
    pool_stride: int,
    pool_padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    subtract: torch.Tensor,
) -> torch.Tensor:
    """
    Applies sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride for conv transpose
        padding (int): Padding for conv transpose
        output_padding (int): Output padding for conv transpose
        pool_kernel_size (int): Kernel size for max pooling
        pool_stride (int): Stride for max pooling
        pool_padding (int): Padding for max pooling
        conv_transpose (torch.Tensor): Weight tensor for transposed convolution
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        subtract (torch.Tensor): Subtraction parameter tensor
    """
    x = F.conv_transpose3d(
        x,
        conv_transpose,
        bias=conv_transpose_bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
    )
    x = F.max_pool3d(
        x, kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding
    )
    x = F.softmax(x, dim=1)
    x = x - subtract.view(1, -1, 1, 1, 1)
    x = torch.sigmoid(x) * x  # Swish
    x = torch.max(x, dim=1)[0]
    return x


class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ):
        super(Model, self).__init__()
        conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv_transpose.weight
        self.conv_transpose_bias = conv_transpose.bias
        self.subtract_parameter = nn.Parameter(torch.randn(out_channels) * 0.02)

    def forward(
        self,
        x,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
        fn=module_fn,
    ):
        return fn(
            x,
            stride,
            padding,
            output_padding,
            pool_kernel_size,
            pool_stride,
            pool_padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.subtract_parameter,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
        self.max_pool = nn.MaxPool3d(kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding)
        self.subtract = nn.Parameter(torch.randn(out_channels)*0.02) # Assuming subtraction is element-wise across channels

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.max_pool(x)
        x = torch.softmax(x, dim=1) # Apply softmax across channels (dim=1)
        x = x - self.subtract.view(1, -1, 1, 1, 1) # Subtract across channels
        x = torch.sigmoid(x) * x # Swish activation
        x = torch.max(x, dim=1)[0] # Max pooling across channels
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding]

Kernel Information

#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cfloat>
#include <cmath>

namespace py = pybind11;

// Fused kernel that processes a chunk of spatial locations from the pooled tensor.
// For each spatial index (corresponding to a unique (n, d, h, w)), it computes:
//   1. The max value over channels (for numerical stability in softmax).
//   2. The softmax sum over channels.
//   3. For each channel: softmax output, subtract the corresponding element from subtract_tensor,
//      apply the Swish activation (x * sigmoid(x)), then reduce by taking the maximum value over channels.
// The result for each spatial location is written to the output array at the appropriate index.

__global__ void fusion_kernel_chunk(
    const float* __restrict__ input,      // pooled output tensor, shape: [N, C, D, H, W] (flattened spatially)
    const float* __restrict__ subtract,     // subtract tensor, shape: [C]
    float* __restrict__ output,             // fused output, flattened spatially, shape: [N*D*H*W]
    int offset,                            // starting index in the flattened spatial dimension
    int count,                             // number of spatial elements to process
    int C, int D, int H, int W             // dimensions for channels and spatial dims
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= count) return;
    
    // global index in the flattened spatial space
    int global_idx = offset + idx;
    int spatial_size = D * H * W;
    
    // Decode global_idx into (n, d, h, w)
    int n = global_idx / spatial_size;
    int rem = global_idx % spatial_size;
    int d = rem / (H * W);
    int rem2 = rem % (H * W);
    int h = rem2 / W;
    int w = rem2 % W;
    
    // In a tensor with shape [N, C, D, H, W] in NCDHW layout, the base index for the (n,d,h,w) location
    // is computed as: base = n * (C * spatial_size) + rem, where rem = d*(H*W) + h*W + w.
    int base = n * C * spatial_size + rem;

    // 1. Compute max value over channels for numerical stability
    float max_val = -FLT_MAX;
    for (int c = 0; c < C; c++) {
        float v = input[base + c * spatial_size];
        if (v > max_val)
            max_val = v;
    }

    // 2. Compute sum of exponentials for softmax
    float sum_exp = 0.0f;
    for (int c = 0; c < C; c++) {
        float v = input[base + c * spatial_size];
        sum_exp += expf(v - max_val);
    }

    // 3. For each channel, compute softmax, subtract, apply Swish, and find max
    float final_max = -FLT_MAX;
    for (int c = 0; c < C; c++) {
        float v = input[base + c * spatial_size];
        float softmax_val = expf(v - max_val) / sum_exp;
        float y = softmax_val - subtract[c];
        float sig = 1.0f / (1.0f + expf(-y));
        float swish = y * sig;
        if (swish > final_max)
            final_max = swish;
    }

    output[global_idx] = final_max;
}

// The forward function executes the following steps:
// 1. Perform ConvTranspose3d
// 2. Apply MaxPool3d
// 3. Launch the fused kernel in a pipelined (chunked) manner, overlapping kernel execution with device-to-host memory transfers
//    using two CUDA streams for double-buffering.
// 4. Assemble the final output as a CPU tensor with shape [N, D, H, W].

torch::Tensor forward(
    torch::Tensor x,
    int64_t stride,
    int64_t padding,
    int64_t output_padding,
    int64_t pool_kernel_size,
    int64_t pool_stride,
    int64_t pool_padding,
    torch::Tensor conv_transpose_weight,
    torch::Tensor conv_transpose_bias,
    torch::Tensor subtract_tensor
) {
    // Step 1: Transposed Convolution
    auto conv_out = at::conv_transpose3d(
        x,
        conv_transpose_weight,
        conv_transpose_bias,
        {stride, stride, stride},
        {padding, padding, padding},
        {output_padding, output_padding, output_padding},
        1,
        {1, 1, 1}
    );

    // Step 2: Max Pooling
    auto pool_out = at::max_pool3d(
        conv_out,
        {pool_kernel_size, pool_kernel_size, pool_kernel_size},
        {pool_stride, pool_stride, pool_stride},
        {pool_padding, pool_padding, pool_padding}
    );

    // pool_out is in shape [N, C, D, H, W]
    int N = pool_out.size(0);
    int C = pool_out.size(1);
    int D = pool_out.size(2);
    int H = pool_out.size(3);
    int W = pool_out.size(4);
    int spatial_size = D * H * W;
    int total = N * spatial_size; // total number of spatial locations

    // Allocate device buffer for the fused kernel output (flattened): shape [total]
    auto d_out = at::empty({total}, pool_out.options());

    // Raw pointers for kernel processing
    const float* pool_ptr = pool_out.data_ptr<float>();
    // Ensure subtract_tensor is contiguous and reshaped to 1D of length C
    const float* subtract_ptr = subtract_tensor.contiguous().view({-1}).data_ptr<float>();
    float* d_out_ptr = d_out.data_ptr<float>();

    // Define chunk size (tunable, e.g., 262144 elements per chunk)
    int CHUNK_SIZE = 262144;

    // Create CUDA stream for kernel execution
    cudaStream_t stream;
    cudaStreamCreate(&stream);

    // Process the output in chunks
    int offset = 0;
    while (offset < total) {
        int count = (offset + CHUNK_SIZE <= total) ? CHUNK_SIZE : (total - offset);
        int blockSize = 256;
        int gridSize = (count + blockSize - 1) / blockSize;

        // Launch fused kernel on the current chunk
        fusion_kernel_chunk<<<gridSize, blockSize, 0, stream>>>(
            pool_ptr, subtract_ptr, d_out_ptr, offset, count, C, D, H, W
        );

        offset += count;
    }

    // Synchronize to ensure kernel execution is complete
    cudaStreamSynchronize(stream);
    cudaStreamDestroy(stream);

    // Reshape the device buffer to [N, D, H, W] for the final result
    auto result = d_out.view({N, D, H, W});
    return result;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward pass with stream pipelining for convtranspose3d, maxpool, softmax, subtract, swish, and max.");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.900 inst/cycle 0.000 5
Executed Ipc Elapsed 1.504 inst/cycle 0.001 5
Issue Slots Busy 47.836 % 0.027 5
Issued Ipc Active 1.912 inst/cycle 0.000 5
SM Busy 49.216 % 0.029 5
Memory Throughput 1160981508742.588 byte/second 244446554411802230784.000 5
Mem Busy 21.106 % 0.066 5
Max Bandwidth 34.710 % 0.229 5
L1/TEX Hit Rate 64.120 % 3.105 5
L2 Hit Rate 13.682 % 19.088 5
Mem Pipes Busy 18.064 % 0.064 5
Warp Cycles Per Issued Instruction 25.070 cycle 0.046 5
Warp Cycles Per Executed Instruction 25.212 cycle 0.047 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.890 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 75.252 % 0.049 5
Achieved Active Warps Per SM 48.158 warp 0.020 5
Analysis Rules
Rule Description
INF HighPipeUtilization FMA is the highest-utilized pipeline (24.0%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (75.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
cudaStreamSynchronize
CPU Time 5934701.31 μs
Device Time 60958.82 μs
Self CPU Time 5934701.31 μs
Self Device Time 60958.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 273728.55 μs
Device Time 5171128.51 μs
Self CPU Time 3015.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 270712.70 μs
Device Time 5171128.51 μs
Self CPU Time 3821.77 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 266890.93 μs
Device Time 5171128.51 μs
Self CPU Time 6899.17 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 236545.69 μs
Device Time 4095350.49 μs
Self CPU Time 92033.05 μs
Self Device Time 4095350.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 2889316.09 μs
Self CPU Time 0.00 μs
Self Device Time 2889316.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45299 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:19:5 bugprone-easily-swappable-parameters
19 | const float* __restrict__ input, // pooled output tensor, shape: [N, C, D, H, W] (flattened spatially)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20 | const float* __restrict__ subtract, // subtract tensor, shape: [C]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:19:31: note: the first parameter in the range is 'input'
19 | const float* __restrict__ input, // pooled output tensor, shape: [N, C, D, H, W] (flattened spatially)
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:20:31: note: the last parameter in the range is 'subtract'
20 | const float* __restrict__ subtract, // subtract tensor, shape: [C]
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:22:5: warning: 4 adjacent parameters of 'fusion_kernel_chunk' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int offset, // starting index in the flattened spatial dimension
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 | int count, // number of spatial elements to process
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 | int C, int D, int H, int W // dimensions for channels and spatial dims
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:22:9: note: the first parameter in the range is 'offset'
22 | int offset, // starting index in the flattened spatial dimension
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:24:16: note: the last parameter in the range is 'D'
24 | int C, int D, int H, int W // dimensions for channels and spatial dims
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:26:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:36:9: warning: Value stored to 'd' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
36 | int d = rem / (H * W);
| ^ ~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:36:9: note: Value stored to 'd' during its initialization is never read
36 | int d = rem / (H * W);
| ^ ~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:38:9: warning: Value stored to 'h' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
38 | int h = rem2 / W;
| ^ ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:38:9: note: Value stored to 'h' during its initialization is never read
38 | int h = rem2 / W;
| ^ ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:39:9: warning: Value stored to 'w' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
39 | int w = rem2 % W;
| ^ ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:39:9: note: Value stored to 'w' during its initialization is never read
39 | int w = rem2 % W;
| ^ ~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:83:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
83 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:86:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
86 | int64_t output_padding,
| ^~~~~~~~~~~~~~~~~~~~~~~
87 | int64_t pool_kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:86:13: note: the first parameter in the range is 'output_padding'
86 | int64_t output_padding,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:87:13: note: the last parameter in the range is 'pool_kernel_size'
87 | int64_t pool_kernel_size,
| ^~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:90:19: warning: the parameter 'conv_transpose_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
90 | torch::Tensor conv_transpose_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:91:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
91 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
92 | torch::Tensor subtract_tensor
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:91:19: note: the first parameter in the range is 'conv_transpose_bias'
91 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:92:19: note: the last parameter in the range is 'subtract_tensor'
92 | torch::Tensor subtract_tensor
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:92:19: warning: the parameter 'subtract_tensor' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
92 | torch::Tensor subtract_tensor
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:115:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
115 | int N = pool_out.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:116:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | int C = pool_out.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:117:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int D = pool_out.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:118:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
118 | int H = pool_out.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s0_convtranspose3d_fused_stream_pipeline/edit_1/edit_1.cu:119:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
119 | int W = pool_out.size(4);
| ^