← Back to Leaderboard

The AI CUDA Engineer 👷

89_ConvTranspose3d_MaxPool_Softmax_Subtract_Swish_Maxbalanced_thread_block_distribution_base

Level 2 • Task 89
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    pool_kernel_size: int,
    pool_stride: int,
    pool_padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    subtract: torch.Tensor,
) -> torch.Tensor:
    """
    Applies sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride for conv transpose
        padding (int): Padding for conv transpose
        output_padding (int): Output padding for conv transpose
        pool_kernel_size (int): Kernel size for max pooling
        pool_stride (int): Stride for max pooling
        pool_padding (int): Padding for max pooling
        conv_transpose (torch.Tensor): Weight tensor for transposed convolution
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        subtract (torch.Tensor): Subtraction parameter tensor
    """
    x = F.conv_transpose3d(
        x,
        conv_transpose,
        bias=conv_transpose_bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
    )
    x = F.max_pool3d(
        x, kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding
    )
    x = F.softmax(x, dim=1)
    x = x - subtract.view(1, -1, 1, 1, 1)
    x = torch.sigmoid(x) * x  # Swish
    x = torch.max(x, dim=1)[0]
    return x


class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ):
        super(Model, self).__init__()
        conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv_transpose.weight
        self.conv_transpose_bias = conv_transpose.bias
        self.subtract_parameter = nn.Parameter(torch.randn(out_channels) * 0.02)

    def forward(
        self,
        x,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
        fn=module_fn,
    ):
        return fn(
            x,
            stride,
            padding,
            output_padding,
            pool_kernel_size,
            pool_stride,
            pool_padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.subtract_parameter,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
        self.max_pool = nn.MaxPool3d(kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding)
        self.subtract = nn.Parameter(torch.randn(out_channels)*0.02) # Assuming subtraction is element-wise across channels

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.max_pool(x)
        x = torch.softmax(x, dim=1) # Apply softmax across channels (dim=1)
        x = x - self.subtract.view(1, -1, 1, 1, 1) # Subtract across channels
        x = torch.sigmoid(x) * x # Swish activation
        x = torch.max(x, dim=1)[0] # Max pooling across channels
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding]

Kernel Information

#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cfloat>
#include <cmath>

namespace py = pybind11;

// This CUDA kernel distributes workloads evenly across threads and blocks.
// Each thread processes one spatial location for a given n, d, h, w.
// The loops over channels are manually unrolled to reduce loop overhead.

__global__ void balanced_fusion_kernel(
    const float* __restrict__ input,        // pooled output: shape [N, C, D, H, W]
    const float* __restrict__ subtract_tensor, // subtract tensor: shape [C] (broadcast over n, d, h, w)
    float* __restrict__ output,               // final output: shape [N, D, H, W]
    int N, int C, int D, int H, int W) {

    // Compute a linear index for each spatial element n, d, h, w
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int NDHW = N * D * H * W;
    if (index >= NDHW) return;

    // Calculate each dimension from the linear index
    int w_idx = index % W;
    int h_idx = (index / W) % H;
    int d_idx = (index / (H * W)) % D;
    int n_idx = index / (D * H * W);

    int strideC = D * H * W;
    int base0 = n_idx * C * strideC + d_idx * H * W + h_idx * W + w_idx;

    // 1. Compute maximum value over channels
    float max_val = -FLT_MAX;
    #pragma unroll
    for (int c = 0; c < C; c++) {
        max_val = max(max_val, input[base0 + c * strideC]);
    }

    // 2. Compute sum of exponentials for softmax normalization
    float sum_exp = 0.0f;
    #pragma unroll
    for (int c = 0; c < C; c++) {
        sum_exp += expf(input[base0 + c * strideC] - max_val);
    }

    // 3. Calculate softmax, subtract, apply swish and find the max value over the channels
    float final_max = -FLT_MAX;
    #pragma unroll
    for (int c = 0; c < C; c++) {
        float sm_val = expf(input[base0 + c * strideC] - max_val) / sum_exp;
        float y = sm_val - subtract_tensor[c];
        float swish = y / (1.0f + expf(-y)); // swish activation
        final_max = max(final_max, swish);
    }

    // Write to output
    output[index] = final_max;
}

// The forward function calls optimized ATen operations and the new kernel

torch::Tensor forward(
    torch::Tensor x,
    int64_t stride,
    int64_t padding,
    int64_t output_padding,
    int64_t pool_kernel_size,
    int64_t pool_stride,
    int64_t pool_padding,
    torch::Tensor conv_transpose_weight,
    torch::Tensor conv_transpose_bias,
    torch::Tensor subtract_tensor
) {
    auto conv_out = at::conv_transpose3d(
        x,
        conv_transpose_weight,
        conv_transpose_bias,
        {stride, stride, stride},
        {padding, padding, padding},
        {output_padding, output_padding, output_padding},
        1,
        {1, 1, 1}
    );

    auto pool_out = at::max_pool3d(
        conv_out,
        {pool_kernel_size, pool_kernel_size, pool_kernel_size},
        {pool_stride, pool_stride, pool_stride},
        {pool_padding, pool_padding, pool_padding}
    );

    int N = pool_out.size(0);
    int C = pool_out.size(1);
    int D = pool_out.size(2);
    int H = pool_out.size(3);
    int W = pool_out.size(4);

    auto output = at::empty({N, D, H, W}, pool_out.options());
    int NDHW = N * D * H * W;
    // Optimal thread and block size for uniform workload distribution
    const int threads = 256;
    const int blocks = (NDHW + threads - 1) / threads;

    balanced_fusion_kernel<<<blocks, threads>>>(
        pool_out.data_ptr<float>(),
        subtract_tensor.data_ptr<float>(),
        output.data_ptr<float>(),
        N, C, D, H, W);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Balanced CUDA forward pass with optimized workload distribution");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.376 inst/cycle 0.000 5
Executed Ipc Elapsed 2.272 inst/cycle 0.000 5
Issue Slots Busy 59.458 % 0.140 5
Issued Ipc Active 2.380 inst/cycle 0.000 5
SM Busy 63.852 % 0.163 5
Memory Throughput 1673690493553.476 byte/second 179794972988697346048.000 5
Mem Busy 31.444 % 0.065 5
Max Bandwidth 49.948 % 0.157 5
L1/TEX Hit Rate 58.576 % 0.023 5
L2 Hit Rate 22.348 % 0.184 5
Mem Pipes Busy 24.258 % 0.035 5
Warp Cycles Per Issued Instruction 22.482 cycle 0.018 5
Warp Cycles Per Executed Instruction 22.494 cycle 0.019 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.300 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 84.254 % 0.227 5
Achieved Active Warps Per SM 53.922 warp 0.091 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (31.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (84.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 8842255.74 μs
Device Time 6953630.01 μs
Self CPU Time 3950.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 8838304.77 μs
Device Time 6953630.01 μs
Self CPU Time 5629.13 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 8832675.64 μs
Device Time 6953630.01 μs
Self CPU Time 13522.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 8783706.24 μs
Device Time 5507327.20 μs
Self CPU Time 129352.32 μs
Self Device Time 5507327.20 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaMemsetAsync
CPU Time 5077423.67 μs
Device Time 0.00 μs
Self CPU Time 5077423.67 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3888718.62 μs
Self CPU Time 0.00 μs
Self Device Time 3888718.62 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:15:5 bugprone-easily-swappable-parameters
15 | const float* __restrict__ input, // pooled output: shape [N, C, D, H, W]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const float* __restrict__ subtract_tensor, // subtract tensor: shape [C] (broadcast over n, d, h, w)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:15:31: note: the first parameter in the range is 'input'
15 | const float* __restrict__ input, // pooled output: shape [N, C, D, H, W]
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:16:31: note: the last parameter in the range is 'subtract_tensor'
16 | const float* __restrict__ subtract_tensor, // subtract tensor: shape [C] (broadcast over n, d, h, w)
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:18:5: warning: 2 adjacent parameters of 'balanced_fusion_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | int N, int C, int D, int H, int W) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:18:9: note: the first parameter in the range is 'N'
18 | int N, int C, int D, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:18:16: note: the last parameter in the range is 'C'
18 | int N, int C, int D, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:21:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int index = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:65:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
65 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:68:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
68 | int64_t output_padding,
| ^~~~~~~~~~~~~~~~~~~~~~~
69 | int64_t pool_kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:68:13: note: the first parameter in the range is 'output_padding'
68 | int64_t output_padding,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:69:13: note: the last parameter in the range is 'pool_kernel_size'
69 | int64_t pool_kernel_size,
| ^~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:72:19: warning: the parameter 'conv_transpose_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | torch::Tensor conv_transpose_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:73:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
73 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
74 | torch::Tensor subtract_tensor
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:73:19: note: the first parameter in the range is 'conv_transpose_bias'
73 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:74:19: note: the last parameter in the range is 'subtract_tensor'
74 | torch::Tensor subtract_tensor
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:74:19: warning: the parameter 'subtract_tensor' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
74 | torch::Tensor subtract_tensor
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:94:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | int N = pool_out.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:95:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int C = pool_out.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:96:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int D = pool_out.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:97:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int H = pool_out.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_89/b5_s3_balanced_thread_block_distribution/base/base.cu:98:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int W = pool_out.size(4);
| ^