← Back to Leaderboard

The AI CUDA Engineer 👷

89_ConvTranspose3d_MaxPool_Softmax_Subtract_Swish_Maxfused_warpshuffle_nodivergence_base

Level 2 • Task 89
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    pool_kernel_size: int,
    pool_stride: int,
    pool_padding: int,
    conv_transpose: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    subtract: torch.Tensor,
) -> torch.Tensor:
    """
    Applies sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        stride (int): Stride for conv transpose
        padding (int): Padding for conv transpose
        output_padding (int): Output padding for conv transpose
        pool_kernel_size (int): Kernel size for max pooling
        pool_stride (int): Stride for max pooling
        pool_padding (int): Padding for max pooling
        conv_transpose (torch.Tensor): Weight tensor for transposed convolution
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        subtract (torch.Tensor): Subtraction parameter tensor
    """
    x = F.conv_transpose3d(
        x,
        conv_transpose,
        bias=conv_transpose_bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
    )
    x = F.max_pool3d(
        x, kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding
    )
    x = F.softmax(x, dim=1)
    x = x - subtract.view(1, -1, 1, 1, 1)
    x = torch.sigmoid(x) * x  # Swish
    x = torch.max(x, dim=1)[0]
    return x


class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ):
        super(Model, self).__init__()
        conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size)
        self.conv_transpose_parameter = conv_transpose.weight
        self.conv_transpose_bias = conv_transpose.bias
        self.subtract_parameter = nn.Parameter(torch.randn(out_channels) * 0.02)

    def forward(
        self,
        x,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
        fn=module_fn,
    ):
        return fn(
            x,
            stride,
            padding,
            output_padding,
            pool_kernel_size,
            pool_stride,
            pool_padding,
            self.conv_transpose_parameter,
            self.conv_transpose_bias,
            self.subtract_parameter,
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        pool_stride,
        pool_padding,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that performs a sequence of operations:
        - ConvTranspose3d
        - MaxPool3d
        - Softmax
        - Subtract
        - Swish
        - Max
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
        self.max_pool = nn.MaxPool3d(kernel_size=pool_kernel_size, stride=pool_stride, padding=pool_padding)
        self.subtract = nn.Parameter(torch.randn(out_channels)*0.02) # Assuming subtraction is element-wise across channels

    def forward(self, x):
        x = self.conv_transpose(x)
        x = self.max_pool(x)
        x = torch.softmax(x, dim=1) # Apply softmax across channels (dim=1)
        x = x - self.subtract.view(1, -1, 1, 1, 1) # Subtract across channels
        x = torch.sigmoid(x) * x # Swish activation
        x = torch.max(x, dim=1)[0] # Max pooling across channels
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
pool_kernel_size = 2
pool_stride = 2
pool_padding = 0

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, output_padding, pool_kernel_size, pool_stride, pool_padding]

Kernel Information

#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <float.h>

namespace py = pybind11;

// Fused kernel that performs softmax (across the channel dimension), subtraction, swish activation, and final channel-wise max reduction,
// using warp shuffle intrinsics to minimize warp divergence and ensure uniform control flow.

// Each block processes one spatial location (n, d, h, w) from an input tensor of shape [N, C, D, H, W].
// Dynamic shared memory is used to store the per-channel exponentials (for softmax) and to facilitate warp-level reductions.

__global__ void fused_kernel(const float* __restrict__ input,
                              float* output,
                              const float* __restrict__ subtract,
                              int N, int C, int D, int H, int W) {
    // Compute spatial indices from blockIdx.x
    int pos = blockIdx.x;  // pos in [0, N*D*H*W)
    int spatial = D * H * W;
    int n = pos / spatial;
    int rem = pos % spatial;
    int d = rem / (H * W);
    int rem2 = rem % (H * W);
    int h = rem2 / W;
    int w = rem2 % W;

    // Allocate dynamic shared memory. Layout:
    // [0, C) -> to hold per-channel computed exp(x) values
    // [C, C + blockDim.x) -> workspace for warp-level reductions
    extern __shared__ float sdata[];
    float* sh_exp = sdata;               // size: C floats
    float* warp_arr = sdata + C;           // size: blockDim.x floats

    // Phase 1: Compute exponentials for softmax and accumulate partial sum
    float partial_sum = 0.0f;
    for (int c = threadIdx.x; c < C; c += blockDim.x) {
        int index = (((n * C + c) * D + d) * H + h) * W + w;
        float val = __ldg(&input[index]);
        float exp_val = expf(val);
        sh_exp[c] = exp_val;
        partial_sum += exp_val;
    }

    // Use warp shuffle to reduce partial_sum across threads within each warp
    unsigned int mask = 0xffffffff;
    float sum = partial_sum;
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        sum += __shfl_down_sync(mask, sum, offset);
    }
    
    int lane = threadIdx.x & (warpSize - 1);
    int warp_id = threadIdx.x / warpSize;
    if (lane == 0) {
        warp_arr[warp_id] = sum;
    }
    __syncthreads();

    // Reduce the per-warp sums to compute the total sum
    int num_warps = (blockDim.x + warpSize - 1) / warpSize;
    float total_sum = 0.0f;
    if (threadIdx.x < num_warps) {
        total_sum = warp_arr[threadIdx.x];
    }
    if (threadIdx.x < warpSize) {
        for (int offset = warpSize/2; offset > 0; offset /= 2) {
            total_sum += __shfl_down_sync(mask, total_sum, offset);
        }
    }
    if (threadIdx.x == 0) {
        warp_arr[0] = total_sum;
    }
    __syncthreads();
    total_sum = warp_arr[0];

    // Phase 2: For each channel, compute fused operation:
    // softmax: soft = exp_val / total_sum, then subtract subtract_tensor value, and apply swish: y * sigmoid(y).
    // Also, compute a local maximum across channels.
    float local_max = -FLT_MAX;
    for (int c = threadIdx.x; c < C; c += blockDim.x) {
        float soft = sh_exp[c] / total_sum;
        float y = soft - __ldg(&subtract[c]);
        float fused_val = y * (1.0f / (1.0f + expf(-y))); // swish activation
        local_max = fmaxf(local_max, fused_val);
    }

    // Warp-level reduction to compute maximum
    float max_val = local_max;
    for (int offset = warpSize/2; offset > 0; offset /= 2) {
        max_val = fmaxf(max_val, __shfl_down_sync(mask, max_val, offset));
    }
    if (lane == 0) {
        warp_arr[warp_id] = max_val;
    }
    __syncthreads();
    float block_max = -FLT_MAX;
    if (threadIdx.x < num_warps) {
        block_max = warp_arr[threadIdx.x];
    }
    if (threadIdx.x < warpSize) {
        for (int offset = warpSize/2; offset > 0; offset /= 2) {
            block_max = fmaxf(block_max, __shfl_down_sync(mask, block_max, offset));
        }
    }
    if (threadIdx.x == 0) {
        output[pos] = block_max;
    }
}

// The forward function first computes the transposed convolution and max pooling using ATen's functions,
// then launches the fused CUDA kernel to perform softmax along the channel dimension, subtract, swish activation, and finally channel-wise max reduction.

torch::Tensor forward(
    torch::Tensor x,
    int64_t stride,
    int64_t padding,
    int64_t output_padding,
    int64_t pool_kernel_size,
    int64_t pool_stride,
    int64_t pool_padding,
    torch::Tensor conv_transpose_weight,
    torch::Tensor conv_transpose_bias,
    torch::Tensor subtract_tensor
) {
    // Transposed convolution
    auto conv_out = at::conv_transpose3d(
        x,
        conv_transpose_weight,
        conv_transpose_bias,
        {stride, stride, stride},
        {padding, padding, padding},
        {output_padding, output_padding, output_padding},
        1,
        {1, 1, 1}
    );

    // MaxPool
    auto pool_out = at::max_pool3d(
        conv_out,
        {pool_kernel_size, pool_kernel_size, pool_kernel_size},
        {pool_stride, pool_stride, pool_stride},
        {pool_padding, pool_padding, pool_padding}
    );

    int N = pool_out.size(0);
    int C = pool_out.size(1);
    int D = pool_out.size(2);
    int H = pool_out.size(3);
    int W = pool_out.size(4);

    auto output = torch::empty({N, D, H, W}, pool_out.options());

    // Each block processes one spatial location (n, d, h, w)
    int spatial = D * H * W;
    int grid_size = N * spatial;
    int block_size = 128;  // chosen to balance occupancy
    // Dynamic shared memory: C floats for storing exp results + block_size floats for warp reduction workspace
    size_t shm_size = (C + block_size) * sizeof(float);

    const float* pool_ptr = pool_out.data_ptr<float>();
    float* output_ptr = output.data_ptr<float>();
    const float* subtract_ptr = subtract_tensor.data_ptr<float>();

    fused_kernel<<<grid_size, block_size, shm_size>>>(pool_ptr, output_ptr, subtract_ptr, N, C, D, H, W);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "CUDA forward pass for fused operations with minimized warp divergence");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.180 inst/cycle 0.000 5
Executed Ipc Elapsed 3.180 inst/cycle 0.000 5
Issue Slots Busy 79.800 % 0.000 5
Issued Ipc Active 3.190 inst/cycle 0.000 5
SM Busy 79.800 % 0.000 5
Memory Throughput 56900148463.452 byte/second 1018322557996453.250 5
Mem Busy 40.804 % 0.000 5
Max Bandwidth 31.650 % 0.000 5
L1/TEX Hit Rate 14.638 % 0.000 5
L2 Hit Rate 87.112 % 0.002 5
Mem Pipes Busy 31.650 % 0.000 5
Warp Cycles Per Issued Instruction 17.582 cycle 0.000 5
Warp Cycles Per Executed Instruction 17.630 cycle 0.000 5
Avg. Active Threads Per Warp 28.900 0.000 5
Avg. Not Predicated Off Threads Per Warp 26.320 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 21.000 block 0.000 5
Block Limit Shared Mem 39.000 block 0.000 5
Block Limit Warps 16.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 88.174 % 0.000 5
Achieved Active Warps Per SM 56.430 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization ALU is the highest-utilized pipeline (63.7%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. The pipeline is well-utilized, but might become a bottleneck if more work is added. Based on the number of executed instructions, the highest utilized pipeline (63.7%) is ALU. It executes integer and logic operations. Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions. See the Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder) or hover over the pipeline name to understand the workloads handled by each pipeline. The Instruction Statistics section shows the mix of executed instructions in this kernel. Check the Warp State Statistics section for which reasons cause warps to stall.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (88.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 8347806.21 μs
Device Time 5408975.19 μs
Self CPU Time 2452.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 8345353.54 μs
Device Time 5408975.19 μs
Self CPU Time 3342.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 8342010.60 μs
Device Time 5408975.19 μs
Self CPU Time 7803.45 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 8308460.47 μs
Device Time 4283272.37 μs
Self CPU Time 103084.41 μs
Self Device Time 4283272.37 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaMemsetAsync
CPU Time 6296958.77 μs
Device Time 0.00 μs
Self CPU Time 6296958.77 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3021194.73 μs
Self CPU Time 0.00 μs
Self Device Time 3021194.73 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45302 warnings generated when compiling for host.
Suppressed 45330 warnings (45283 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:19:31 bugprone-easily-swappable-parameters
19 | int N, int C, int D, int H, int W) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:19:35: note: the first parameter in the range is 'N'
19 | int N, int C, int D, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:19:42: note: the last parameter in the range is 'C'
19 | int N, int C, int D, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:21:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int pos = blockIdx.x; // pos in [0, N*D*H*W)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:39:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int c = threadIdx.x; c < C; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:39:43: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int c = threadIdx.x; c < C; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:54:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
54 | int lane = threadIdx.x & (warpSize - 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:55:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
55 | int warp_id = threadIdx.x / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:62:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
62 | int num_warps = (blockDim.x + warpSize - 1) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:82:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | for (int c = threadIdx.x; c < C; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:82:43: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | for (int c = threadIdx.x; c < C; c += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:116:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
116 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:119:5: warning: 2 adjacent parameters of 'forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
119 | int64_t output_padding,
| ^~~~~~~~~~~~~~~~~~~~~~~
120 | int64_t pool_kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:119:13: note: the first parameter in the range is 'output_padding'
119 | int64_t output_padding,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:120:13: note: the last parameter in the range is 'pool_kernel_size'
120 | int64_t pool_kernel_size,
| ^~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:123:19: warning: the parameter 'conv_transpose_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
123 | torch::Tensor conv_transpose_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:124:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
124 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
125 | torch::Tensor subtract_tensor
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:124:19: note: the first parameter in the range is 'conv_transpose_bias'
124 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:125:19: note: the last parameter in the range is 'subtract_tensor'
125 | torch::Tensor subtract_tensor
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:125:19: warning: the parameter 'subtract_tensor' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
125 | torch::Tensor subtract_tensor
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:147:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | int N = pool_out.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:148:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
148 | int C = pool_out.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:149:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
149 | int D = pool_out.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:150:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
150 | int H = pool_out.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_89/b5_s1_fused_warpshuffle_nodivergence/base/base.cu:151:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
151 | int W = pool_out.size(4);
| ^