← Back to Leaderboard

The AI CUDA Engineer 👷

11_VGG1611_vgg16_unroll_base

Level 3 • Task 11
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weights: nn.ParameterList,
    conv_biases: nn.ParameterList,
    fc_weights: nn.ParameterList,
    fc_biases: nn.ParameterList,
    is_training: bool,
) -> torch.Tensor:
    """
    Implements the VGG16 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        conv_weights (nn.ParameterList): List of convolutional weights
        conv_biases (nn.ParameterList): List of convolutional biases
        fc_weights (nn.ParameterList): List of fully connected weights
        fc_biases (nn.ParameterList): List of fully connected biases
        is_training (bool): Whether in training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Block 1
    x = F.conv2d(x, conv_weights[0], conv_biases[0], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[1], conv_biases[1], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 2
    x = F.conv2d(x, conv_weights[2], conv_biases[2], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[3], conv_biases[3], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 3
    x = F.conv2d(x, conv_weights[4], conv_biases[4], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[5], conv_biases[5], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[6], conv_biases[6], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 4
    x = F.conv2d(x, conv_weights[7], conv_biases[7], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[8], conv_biases[8], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[9], conv_biases[9], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 5
    x = F.conv2d(x, conv_weights[10], conv_biases[10], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[11], conv_biases[11], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[12], conv_biases[12], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Classifier
    x = torch.flatten(x, 1)
    x = F.linear(x, fc_weights[0], fc_biases[0])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[1], fc_biases[1])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[2], fc_biases[2])

    return x


class Model(nn.Module):
    def __init__(self, num_classes=1000):
        super(Model, self).__init__()

        # Extract convolutional parameters
        self.conv_weights = nn.ParameterList()
        self.conv_biases = nn.ParameterList()

        # Block 1
        conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 2
        conv = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 3
        conv = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 4
        conv = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 5
        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Extract fully connected parameters
        self.fc_weights = nn.ParameterList()
        self.fc_biases = nn.ParameterList()

        fc = nn.Linear(512 * 7 * 7, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, num_classes)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_weights,
            self.conv_biases,
            self.fc_weights,
            self.fc_biases,
            self.training,
        )


# Test code
batch_size = 10
num_classes = 1000


def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes=1000):
        """
        Initialize the VGG16 model.
        
        :param num_classes: The number of output classes (default is 1000 for ImageNet)
        """
        super(Model, self).__init__()
        
        # VGG16 architecture: 5 blocks of convolutional layers followed by max pooling
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 2
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 3
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 4
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 5
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Fully connected layers
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, num_classes)
        )
    
    def forward(self, x):
        """
        Forward pass of the VGG16 model.
        
        :param x: The input tensor, shape (batch_size, 3, 224, 224)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        x = self.features(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

# Test code
batch_size = 10
num_classes = 1000

def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 11 • 11_VGG16)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_vgg16_with_custom_conv_base 3.19 1.02 0.60
🥈 11_vgg16_atomic_optimization_base 3.20 1.02 0.60
🥉 modular_vgg16_optimized_base_base 3.21 1.01 0.60
4 11_vgg16_shared_memory_reduction_base 3.21 1.01 0.60
5 11_vgg16_unroll_optimization_base_base 3.22 1.01 0.60
6 11_vgg16_warp_aligned_base 3.23 1.01 0.60
7 11_vgg16_thread_block_optimization_base 3.23 1.01 0.60
8 11_VGG16 3.25 1.00 0.59
9 11_vgg16_blocksize_experiment_base 3.31 0.98 0.58
10 11_vgg16_optmaxpool_base 3.33 0.98 0.58
11 11_vgg16_opt_pool_idx_base 3.33 0.98 0.58
12 optimized_vgg16_overlap_base 3.33 0.98 0.58
13 11_vgg16_optwarp_divergence_base 3.33 0.98 0.58
14 11_vgg16_unroll_base 3.35 0.97 0.58
15 vgg16_streams_overlap_base 3.38 0.96 0.57
16 divergence_free_vgg16_base 3.41 0.95 0.56
17 modular_vgg16_edit_1 3.42 0.95 0.56
18 fused_conv2d_relu_base 3.48 0.93 0.55
19 warp_optimized_conv1_edit_1 3.50 0.93 0.55
20 optimized_const_blocksize_base 3.50 0.93 0.55
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// This kernel is specialized for VGG16's first convolution layer where input has 3 channels and kernel size is 3.
// It manually unrolls the loops over the 3x3 kernel and the small channel dimension (C==3) to reduce loop overhead.

__global__ void conv2d_first_layer_kernel(
    const float* __restrict__ input,   // shape: (N, 3, H, W)
    const float* __restrict__ weight,  // shape: (K, 3, 3, 3) -> K x 27
    const float* __restrict__ bias,    // shape: (K)
    float* __restrict__ output,        // shape: (N, K, H, W)
    int N, int H, int W, int K
) {
    // Compute spatial coordinates
    int w = blockIdx.x * blockDim.x + threadIdx.x;
    int h = blockIdx.y * blockDim.y + threadIdx.y;
    // Combine batch and output channel in blockIdx.z
    int nk = blockIdx.z;  // n * K + k
    int n = nk / K;
    int k = nk % K;

    if (h >= H || w >= W) return;

    // Padding = 1 assumed
    float sum = bias[k];

    // For each input channel (C=3) and 3x3 kernel, completely unroll the loops.
    // Compute base indexes
    int in_base = n * 3 * H * W;  // starting offset for input of batch n
    int weight_base = k * 27;     // each filter has 27 elements

    // Unroll for channel 0
    {
        int c = 0;
        int offset = in_base + c * H * W;
        int r = h - 1; // starting row index in input
        int cidx;
        float v0, v1, v2;

        // position (0,0)
        cidx = w - 1;
        v0 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        // position (0,1)
        cidx = w;
        v1 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        // position (0,2)
        cidx = w + 1;
        v2 = ((r >= 0 && r < H && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        sum += v0 * weight[weight_base + 0];
        sum += v1 * weight[weight_base + 1];
        sum += v2 * weight[weight_base + 2];
    }

    // Unroll for channel 1
    {
        int c = 1;
        int offset = in_base + c * H * W;
        int weight_base_c = weight_base + 9; // next 9 weights for channel 1
        int r = h - 1;
        int cidx;
        float v0, v1, v2;

        cidx = w - 1;
        v0 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        cidx = w;
        v1 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        cidx = w + 1;
        v2 = ((r >= 0 && r < H && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        sum += v0 * weight[weight_base_c + 0];
        sum += v1 * weight[weight_base_c + 1];
        sum += v2 * weight[weight_base_c + 2];
    }

    // Unroll for channel 2
    {
        int c = 2;
        int offset = in_base + c * H * W;
        int weight_base_c = weight_base + 18; // next 9 weights for channel 2
        int r = h - 1;
        int cidx;
        float v0, v1, v2;

        cidx = w - 1;
        v0 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        cidx = w;
        v1 = ((r >= 0 && r < H && cidx >= 0 && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        cidx = w + 1;
        v2 = ((r >= 0 && r < H && cidx < W) ? input[offset + r * W + cidx] : 0.0f);
        sum += v0 * weight[weight_base_c + 0];
        sum += v1 * weight[weight_base_c + 1];
        sum += v2 * weight[weight_base_c + 2];
    }

    output[n * K * H * W + k * H * W + h * W + w] = sum;
}

// Host function to launch the specialized first-layer convolution kernel
torch::Tensor custom_conv2d_first_layer(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
    int N = input.size(0);
    int H = input.size(2);
    int W = input.size(3);
    int K = weight.size(0); // output channels

    auto output = torch::empty({N, K, H, W}, input.options());

    dim3 block(16, 16);
    dim3 grid((W + block.x - 1) / block.x, (H + block.y - 1) / block.y, N * K);

    conv2d_first_layer_kernel<<<grid, block>>>(
        input.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        N, H, W, K
    );

    return output;
}

// VGG16 forward pass using the specialized unrolled conv kernel for the first layer
// and standard torch calls for the remaining layers.

torch::Tensor vgg16_forward_cuda(
    torch::Tensor x,
    std::vector<torch::Tensor> conv_weights,
    std::vector<torch::Tensor> conv_biases,
    std::vector<torch::Tensor> fc_weights,
    std::vector<torch::Tensor> fc_biases,
    bool is_training
) {
    auto current = x;

    // Block 1 - use the custom unrolled convolution for the first layer (assumes input channels == 3 and kernel size == 3, padding=1)
    current = custom_conv2d_first_layer(current, conv_weights[0], conv_biases[0]);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[1], conv_biases[1], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // Block 2
    current = torch::conv2d(current, conv_weights[2], conv_biases[2], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[3], conv_biases[3], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // Block 3
    current = torch::conv2d(current, conv_weights[4], conv_biases[4], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[5], conv_biases[5], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[6], conv_biases[6], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // Block 4
    current = torch::conv2d(current, conv_weights[7], conv_biases[7], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[8], conv_biases[8], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[9], conv_biases[9], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // Block 5
    current = torch::conv2d(current, conv_weights[10], conv_biases[10], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[11], conv_biases[11], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[12], conv_biases[12], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // Classifier
    current = current.flatten(1);
    current = torch::linear(current, fc_weights[0], fc_biases[0]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[1], fc_biases[1]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[2], fc_biases[2]);

    return current;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &vgg16_forward_cuda, "VGG16 forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.940 inst/cycle 0.000 5
Executed Ipc Elapsed 2.902 inst/cycle 0.000 5
Issue Slots Busy 73.554 % 0.000 5
Issued Ipc Active 2.940 inst/cycle 0.000 5
SM Busy 73.554 % 0.000 5
Memory Throughput 613251473706.144 byte/second 1676306043945586688.000 5
Mem Busy 97.394 % 0.003 5
Max Bandwidth 64.868 % 0.001 5
L1/TEX Hit Rate 61.892 % 0.001 5
L2 Hit Rate 98.870 % 0.011 5
Mem Pipes Busy 57.036 % 0.001 5
Warp Cycles Per Issued Instruction 18.664 cycle 0.000 5
Warp Cycles Per Executed Instruction 18.668 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.270 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 86.572 % 0.000 5
Achieved Active Warps Per SM 55.406 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (46.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (86.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
cudaLaunchKernel
CPU Time 4222923.65 μs
Device Time 7840.01 μs
Self CPU Time 4222923.65 μs
Self Device Time 7840.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 4040363.66 μs
Device Time 3533389.73 μs
Self CPU Time 35324.16 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 4005039.50 μs
Device Time 3533389.73 μs
Self CPU Time 45853.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3959186.22 μs
Device Time 3533389.73 μs
Self CPU Time 92868.38 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 3214941.50 μs
Device Time 2878096.49 μs
Self CPU Time 451050.90 μs
Self Device Time 2878096.49 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 596192.30 μs
Device Time 895083.74 μs
Self CPU Time 10550.92 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45293 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:9:5 bugprone-easily-swappable-parameters
9 | const float* __restrict__ input, // shape: (N, 3, H, W)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ weight, // shape: (K, 3, 3, 3) -> K x 27
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bias, // shape: (K)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:9:31: note: the first parameter in the range is 'input'
9 | const float* __restrict__ input, // shape: (N, 3, H, W)
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:11:31: note: the last parameter in the range is 'bias'
11 | const float* __restrict__ bias, // shape: (K)
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:13:5: warning: 2 adjacent parameters of 'conv2d_first_layer_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int N, int H, int W, int K
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:13:9: note: the first parameter in the range is 'N'
13 | int N, int H, int W, int K
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:13:16: note: the last parameter in the range is 'H'
13 | int N, int H, int W, int K
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:16:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | int w = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:17:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int h = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:19:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int nk = blockIdx.z; // n * K + k
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:99:55: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
99 | torch::Tensor custom_conv2d_first_layer(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:99:76: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
99 | torch::Tensor custom_conv2d_first_layer(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:99:98: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
99 | torch::Tensor custom_conv2d_first_layer(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:100:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:101:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | int H = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:102:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int W = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:103:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int K = weight.size(0); // output channels
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:127:5: warning: 2 adjacent parameters of 'vgg16_forward_cuda' of similar type ('std::vector<torch::Tensor>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
127 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
128 | std::vector<torch::Tensor> fc_weights,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:127:32: note: the first parameter in the range is 'conv_biases'
127 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:128:32: note: the last parameter in the range is 'fc_weights'
128 | std::vector<torch::Tensor> fc_weights,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b6_s2_11_vgg16_unroll/base/base.cu:132:20: warning: parameter 'x' is passed by value and only copied once; consider moving it to avoid unnecessary copies [performance-unnecessary-value-param]
4 | auto current = x;
| ^
| std::move( )