← Back to Leaderboard

The AI CUDA Engineer 👷

11_VGG16optimized_const_blocksize_base

Level 3 • Task 11
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weights: nn.ParameterList,
    conv_biases: nn.ParameterList,
    fc_weights: nn.ParameterList,
    fc_biases: nn.ParameterList,
    is_training: bool,
) -> torch.Tensor:
    """
    Implements the VGG16 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        conv_weights (nn.ParameterList): List of convolutional weights
        conv_biases (nn.ParameterList): List of convolutional biases
        fc_weights (nn.ParameterList): List of fully connected weights
        fc_biases (nn.ParameterList): List of fully connected biases
        is_training (bool): Whether in training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Block 1
    x = F.conv2d(x, conv_weights[0], conv_biases[0], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[1], conv_biases[1], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 2
    x = F.conv2d(x, conv_weights[2], conv_biases[2], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[3], conv_biases[3], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 3
    x = F.conv2d(x, conv_weights[4], conv_biases[4], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[5], conv_biases[5], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[6], conv_biases[6], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 4
    x = F.conv2d(x, conv_weights[7], conv_biases[7], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[8], conv_biases[8], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[9], conv_biases[9], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 5
    x = F.conv2d(x, conv_weights[10], conv_biases[10], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[11], conv_biases[11], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[12], conv_biases[12], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Classifier
    x = torch.flatten(x, 1)
    x = F.linear(x, fc_weights[0], fc_biases[0])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[1], fc_biases[1])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[2], fc_biases[2])

    return x


class Model(nn.Module):
    def __init__(self, num_classes=1000):
        super(Model, self).__init__()

        # Extract convolutional parameters
        self.conv_weights = nn.ParameterList()
        self.conv_biases = nn.ParameterList()

        # Block 1
        conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 2
        conv = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 3
        conv = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 4
        conv = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 5
        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Extract fully connected parameters
        self.fc_weights = nn.ParameterList()
        self.fc_biases = nn.ParameterList()

        fc = nn.Linear(512 * 7 * 7, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, num_classes)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_weights,
            self.conv_biases,
            self.fc_weights,
            self.fc_biases,
            self.training,
        )


# Test code
batch_size = 10
num_classes = 1000


def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes=1000):
        """
        Initialize the VGG16 model.
        
        :param num_classes: The number of output classes (default is 1000 for ImageNet)
        """
        super(Model, self).__init__()
        
        # VGG16 architecture: 5 blocks of convolutional layers followed by max pooling
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 2
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 3
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 4
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 5
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Fully connected layers
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, num_classes)
        )
    
    def forward(self, x):
        """
        Forward pass of the VGG16 model.
        
        :param x: The input tensor, shape (batch_size, 3, 224, 224)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        x = self.features(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

# Test code
batch_size = 10
num_classes = 1000

def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 11 • 11_VGG16)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_vgg16_with_custom_conv_base 3.19 1.02 0.60
🥈 11_vgg16_atomic_optimization_base 3.20 1.02 0.60
🥉 modular_vgg16_optimized_base_base 3.21 1.01 0.60
4 11_vgg16_shared_memory_reduction_base 3.21 1.01 0.60
5 11_vgg16_unroll_optimization_base_base 3.22 1.01 0.60
6 11_vgg16_warp_aligned_base 3.23 1.01 0.60
7 11_vgg16_thread_block_optimization_base 3.23 1.01 0.60
8 11_VGG16 3.25 1.00 0.59
9 11_vgg16_blocksize_experiment_base 3.31 0.98 0.58
10 11_vgg16_optmaxpool_base 3.33 0.98 0.58
11 11_vgg16_opt_pool_idx_base 3.33 0.98 0.58
12 optimized_vgg16_overlap_base 3.33 0.98 0.58
13 11_vgg16_optwarp_divergence_base 3.33 0.98 0.58
14 11_vgg16_unroll_base 3.35 0.97 0.58
15 vgg16_streams_overlap_base 3.38 0.96 0.57
16 divergence_free_vgg16_base 3.41 0.95 0.56
17 modular_vgg16_edit_1 3.42 0.95 0.56
18 fused_conv2d_relu_base 3.48 0.93 0.55
19 warp_optimized_conv1_edit_1 3.50 0.93 0.55
20 optimized_const_blocksize_base 3.50 0.93 0.55
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>

// Allow tuning of the block dimension at compile time. Candidate values: 16, 32, etc.
#ifndef BLOCK_DIM
#define BLOCK_DIM 16
#endif

// Definitions for the first conv layer (Block 1)
#define CONV1_OUT_CHANNELS 64
#define CONV1_IN_CHANNELS 3
#define CONV1_KERNEL_SIZE 3
#define CONV1_WEIGHTS_SIZE (CONV1_OUT_CHANNELS * CONV1_IN_CHANNELS * CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE)

// Store frequently accessed weights and biases in constant memory
__constant__ float const_conv1_weights[CONV1_WEIGHTS_SIZE];
__constant__ float const_conv1_bias[CONV1_OUT_CHANNELS];

// Custom CUDA kernel for the first convolution layer using constant memory & tunable block sizes
__global__ void conv1_kernel_block_optimized(const float* __restrict__ input,
                                               float* __restrict__ output,
                                               int N, int H, int W) {
    // Each thread computes one output pixel for one channel
    int oc = blockIdx.z % CONV1_OUT_CHANNELS;
    int n  = blockIdx.z / CONV1_OUT_CHANNELS;
    int x = blockIdx.x * BLOCK_DIM + threadIdx.x;
    int y = blockIdx.y * BLOCK_DIM + threadIdx.y;

    if (x < W && y < H) {
        float sum = 0.0f;
        // Loop over input channels and kernel spatial dimensions
        for (int c = 0; c < CONV1_IN_CHANNELS; ++c) {
            for (int ky = 0; ky < CONV1_KERNEL_SIZE; ++ky) {
                for (int kx = 0; kx < CONV1_KERNEL_SIZE; ++kx) {
                    int in_y = y + ky - 1; // padding = 1
                    int in_x = x + kx - 1;
                    if (in_y >= 0 && in_y < H && in_x >= 0 && in_x < W) {
                        int input_index = n * (CONV1_IN_CHANNELS * H * W) + c * (H * W) + in_y * W + in_x;
                        int weight_index = oc * (CONV1_IN_CHANNELS * CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE) +
                                           c * (CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE) + ky * CONV1_KERNEL_SIZE + kx;
                        sum += input[input_index] * const_conv1_weights[weight_index];
                    }
                }
            }
        }
        sum += const_conv1_bias[oc];
        int output_index = n * (CONV1_OUT_CHANNELS * H * W) + oc * (H * W) + y * W + x;
        output[output_index] = sum;
    }
}

// Helper function to launch the optimized conv1 kernel with tunable block sizes
torch::Tensor conv1_with_optimized_blocksize(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
    int N = input.size(0);
    int H = input.size(2);
    int W = input.size(3);
    auto output = torch::empty({N, CONV1_OUT_CHANNELS, H, W}, input.options());

    // Copy the first conv layer weights and biases to constant memory
    cudaMemcpyToSymbol(const_conv1_weights, weight.data_ptr<float>(), CONV1_WEIGHTS_SIZE * sizeof(float));
    cudaMemcpyToSymbol(const_conv1_bias, bias.data_ptr<float>(), CONV1_OUT_CHANNELS * sizeof(float));

    // Use a block of BLOCK_DIM x BLOCK_DIM threads; experiment with BLOCK_DIM (e.g., compile with -DBLOCK_DIM=32)
    dim3 block(BLOCK_DIM, BLOCK_DIM);
    dim3 grid((W + BLOCK_DIM - 1) / BLOCK_DIM,
              (H + BLOCK_DIM - 1) / BLOCK_DIM,
              N * CONV1_OUT_CHANNELS);

    conv1_kernel_block_optimized<<<grid, block>>>(input.data_ptr<float>(), output.data_ptr<float>(), N, H, W);
    cudaDeviceSynchronize();
    return output;
}

// VGG16 forward pass using a mix of optimized constant memory conv1 with tunable block sizes and torch ops for the rest
torch::Tensor vgg16_forward_cuda(
    torch::Tensor x,
    std::vector<torch::Tensor> conv_weights,
    std::vector<torch::Tensor> conv_biases,
    std::vector<torch::Tensor> fc_weights,
    std::vector<torch::Tensor> fc_biases,
    bool is_training
) {
    auto current = x;

    // --- Block 1 ---
    // Use the optimized conv1 kernel for the first convolution layer (weights in constant memory & block size tuning)
    auto conv1_out = conv1_with_optimized_blocksize(current, conv_weights[0], conv_biases[0]);
    current = torch::relu(conv1_out);
    current = torch::conv2d(current, conv_weights[1], conv_biases[1], /*stride=*/1, /*padding=*/1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);

    // --- Block 2 ---
    current = torch::conv2d(current, conv_weights[2], conv_biases[2], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[3], conv_biases[3], 1, 1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, 2, 2);

    // --- Block 3 ---
    current = torch::conv2d(current, conv_weights[4], conv_biases[4], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[5], conv_biases[5], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[6], conv_biases[6], 1, 1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, 2, 2);

    // --- Block 4 ---
    current = torch::conv2d(current, conv_weights[7], conv_biases[7], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[8], conv_biases[8], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[9], conv_biases[9], 1, 1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, 2, 2);

    // --- Block 5 ---
    current = torch::conv2d(current, conv_weights[10], conv_biases[10], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[11], conv_biases[11], 1, 1);
    current = torch::relu(current);
    current = torch::conv2d(current, conv_weights[12], conv_biases[12], 1, 1);
    current = torch::relu(current);
    current = torch::max_pool2d(current, 2, 2);

    // --- Classifier ---
    current = current.flatten(1);
    current = torch::linear(current, fc_weights[0], fc_biases[0]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[1], fc_biases[1]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[2], fc_biases[2]);

    return current;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &vgg16_forward_cuda, "VGG16 forward (optimized CUDA with tunable block sizes)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.510 inst/cycle 0.000 5
Executed Ipc Elapsed 2.490 inst/cycle 0.000 5
Issue Slots Busy 62.680 % 0.000 5
Issued Ipc Active 2.510 inst/cycle 0.000 5
SM Busy 62.680 % 0.000 5
Memory Throughput 319684799450.876 byte/second 244195700899629984.000 5
Mem Busy 90.256 % 0.002 5
Max Bandwidth 54.216 % 0.001 5
L1/TEX Hit Rate 82.676 % 0.000 5
L2 Hit Rate 97.908 % 0.004 5
Mem Pipes Busy 94.674 % 0.002 5
Warp Cycles Per Issued Instruction 16.740 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.740 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.750 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 65.964 % 0.000 5
Achieved Active Warps Per SM 42.216 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (38.4%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
cudaDeviceSynchronize
CPU Time 5741553.13 μs
Device Time 12457.54 μs
Self CPU Time 5741553.13 μs
Self Device Time 12457.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 1498191.39 μs
Device Time 4574874.65 μs
Self CPU Time 43253.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1454937.84 μs
Device Time 4574874.65 μs
Self CPU Time 53949.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1400988.36 μs
Device Time 4574874.65 μs
Self CPU Time 111801.98 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 1053870.68 μs
Device Time 3723263.30 μs
Self CPU Time 514083.48 μs
Self Device Time 3723263.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 291597.46 μs
Device Time 1163487.39 μs
Self CPU Time 13304.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45293 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:24:48 bugprone-easily-swappable-parameters
24 | int N, int H, int W) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:24:52: note: the first parameter in the range is 'N'
24 | int N, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:24:59: note: the last parameter in the range is 'H'
24 | int N, int H, int W) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:26:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int oc = blockIdx.z % CONV1_OUT_CHANNELS;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:27:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int n = blockIdx.z / CONV1_OUT_CHANNELS;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:28:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int x = blockIdx.x * BLOCK_DIM + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:29:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int y = blockIdx.y * BLOCK_DIM + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:55:60: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
55 | torch::Tensor conv1_with_optimized_blocksize(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:55:81: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
55 | torch::Tensor conv1_with_optimized_blocksize(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:55:103: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
55 | torch::Tensor conv1_with_optimized_blocksize(torch::Tensor input, torch::Tensor weight, torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:56:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
56 | int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:57:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
57 | int H = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:58:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | int W = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:62:71: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
62 | cudaMemcpyToSymbol(const_conv1_weights, weight.data_ptr<float>(), CONV1_WEIGHTS_SIZE * sizeof(float));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:15:29: note: expanded from macro 'CONV1_WEIGHTS_SIZE'
15 | #define CONV1_WEIGHTS_SIZE (CONV1_OUT_CHANNELS * CONV1_IN_CHANNELS * CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:12:28: note: expanded from macro 'CONV1_OUT_CHANNELS'
12 | #define CONV1_OUT_CHANNELS 64
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:62:71: note: make conversion explicit to silence this warning
62 | cudaMemcpyToSymbol(const_conv1_weights, weight.data_ptr<float>(), CONV1_WEIGHTS_SIZE * sizeof(float));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:15:29: note: expanded from macro 'CONV1_WEIGHTS_SIZE'
15 | #define CONV1_WEIGHTS_SIZE (CONV1_OUT_CHANNELS * CONV1_IN_CHANNELS * CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:12:28: note: expanded from macro 'CONV1_OUT_CHANNELS'
12 | #define CONV1_OUT_CHANNELS 64
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:62:71: note: perform multiplication in a wider type
62 | cudaMemcpyToSymbol(const_conv1_weights, weight.data_ptr<float>(), CONV1_WEIGHTS_SIZE * sizeof(float));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:15:29: note: expanded from macro 'CONV1_WEIGHTS_SIZE'
15 | #define CONV1_WEIGHTS_SIZE (CONV1_OUT_CHANNELS * CONV1_IN_CHANNELS * CONV1_KERNEL_SIZE * CONV1_KERNEL_SIZE)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:12:28: note: expanded from macro 'CONV1_OUT_CHANNELS'
12 | #define CONV1_OUT_CHANNELS 64
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:80:5: warning: 2 adjacent parameters of 'vgg16_forward_cuda' of similar type ('std::vector<torch::Tensor>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
80 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
81 | std::vector<torch::Tensor> fc_weights,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:80:32: note: the first parameter in the range is 'conv_biases'
80 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:81:32: note: the last parameter in the range is 'fc_weights'
81 | std::vector<torch::Tensor> fc_weights,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_11/b2_s0_optimized_const_blocksize/base/base.cu:85:20: warning: parameter 'x' is passed by value and only copied once; consider moving it to avoid unnecessary copies [performance-unnecessary-value-param]
4 | auto current = x;
| ^
| std::move( )