← Back to Leaderboard

The AI CUDA Engineer 👷

11_VGG16vgg16_streams_overlap_base

Level 3 • Task 11
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weights: nn.ParameterList,
    conv_biases: nn.ParameterList,
    fc_weights: nn.ParameterList,
    fc_biases: nn.ParameterList,
    is_training: bool,
) -> torch.Tensor:
    """
    Implements the VGG16 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        conv_weights (nn.ParameterList): List of convolutional weights
        conv_biases (nn.ParameterList): List of convolutional biases
        fc_weights (nn.ParameterList): List of fully connected weights
        fc_biases (nn.ParameterList): List of fully connected biases
        is_training (bool): Whether in training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Block 1
    x = F.conv2d(x, conv_weights[0], conv_biases[0], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[1], conv_biases[1], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 2
    x = F.conv2d(x, conv_weights[2], conv_biases[2], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[3], conv_biases[3], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 3
    x = F.conv2d(x, conv_weights[4], conv_biases[4], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[5], conv_biases[5], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[6], conv_biases[6], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 4
    x = F.conv2d(x, conv_weights[7], conv_biases[7], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[8], conv_biases[8], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[9], conv_biases[9], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Block 5
    x = F.conv2d(x, conv_weights[10], conv_biases[10], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[11], conv_biases[11], padding=1)
    x = F.relu(x)
    x = F.conv2d(x, conv_weights[12], conv_biases[12], padding=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Classifier
    x = torch.flatten(x, 1)
    x = F.linear(x, fc_weights[0], fc_biases[0])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[1], fc_biases[1])
    x = F.relu(x)
    x = F.dropout(x, p=0.0, training=is_training)
    x = F.linear(x, fc_weights[2], fc_biases[2])

    return x


class Model(nn.Module):
    def __init__(self, num_classes=1000):
        super(Model, self).__init__()

        # Extract convolutional parameters
        self.conv_weights = nn.ParameterList()
        self.conv_biases = nn.ParameterList()

        # Block 1
        conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 2
        conv = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 3
        conv = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 4
        conv = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Block 5
        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        conv = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv_weights.append(nn.Parameter(conv.weight.data.clone()))
        self.conv_biases.append(nn.Parameter(conv.bias.data.clone()))

        # Extract fully connected parameters
        self.fc_weights = nn.ParameterList()
        self.fc_biases = nn.ParameterList()

        fc = nn.Linear(512 * 7 * 7, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, 4096)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

        fc = nn.Linear(4096, num_classes)
        self.fc_weights.append(nn.Parameter(fc.weight.data.clone()))
        self.fc_biases.append(nn.Parameter(fc.bias.data.clone()))

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv_weights,
            self.conv_biases,
            self.fc_weights,
            self.fc_biases,
            self.training,
        )


# Test code
batch_size = 10
num_classes = 1000


def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes=1000):
        """
        Initialize the VGG16 model.
        
        :param num_classes: The number of output classes (default is 1000 for ImageNet)
        """
        super(Model, self).__init__()
        
        # VGG16 architecture: 5 blocks of convolutional layers followed by max pooling
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 2
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 3
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 4
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            # Block 5
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Fully connected layers
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.0),
            nn.Linear(4096, num_classes)
        )
    
    def forward(self, x):
        """
        Forward pass of the VGG16 model.
        
        :param x: The input tensor, shape (batch_size, 3, 224, 224)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        x = self.features(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

# Test code
batch_size = 10
num_classes = 1000

def get_inputs():
    return [torch.randn(batch_size, 3, 224, 224)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 11 • 11_VGG16)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_vgg16_with_custom_conv_base 3.19 1.02 0.60
🥈 11_vgg16_atomic_optimization_base 3.20 1.02 0.60
🥉 modular_vgg16_optimized_base_base 3.21 1.01 0.60
4 11_vgg16_shared_memory_reduction_base 3.21 1.01 0.60
5 11_vgg16_unroll_optimization_base_base 3.22 1.01 0.60
6 11_vgg16_warp_aligned_base 3.23 1.01 0.60
7 11_vgg16_thread_block_optimization_base 3.23 1.01 0.60
8 11_VGG16 3.25 1.00 0.59
9 11_vgg16_blocksize_experiment_base 3.31 0.98 0.58
10 11_vgg16_optmaxpool_base 3.33 0.98 0.58
11 11_vgg16_opt_pool_idx_base 3.33 0.98 0.58
12 optimized_vgg16_overlap_base 3.33 0.98 0.58
13 11_vgg16_optwarp_divergence_base 3.33 0.98 0.58
14 11_vgg16_unroll_base 3.35 0.97 0.58
15 vgg16_streams_overlap_base 3.38 0.96 0.57
16 divergence_free_vgg16_base 3.41 0.95 0.56
17 modular_vgg16_edit_1 3.42 0.95 0.56
18 fused_conv2d_relu_base 3.48 0.93 0.55
19 warp_optimized_conv1_edit_1 3.50 0.93 0.55
20 optimized_const_blocksize_base 3.50 0.93 0.55
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define WARP_SIZE 32
#define BLOCK_SIZE 256
#define TILE_SIZE 16

// Kernel for 2D convolution with atomic operations optimization
__global__ void conv2d_atomic_kernel(const float* input, const float* weight, const float* bias,
                                      float* output, int N, int C, int H, int W,
                                      int K, int P, int stride) {
    extern __shared__ float shared_mem[];
    float* tile = shared_mem;

    int n = blockIdx.z;
    int k = blockIdx.y;
    int h = blockIdx.x * TILE_SIZE + threadIdx.y;
    int w = threadIdx.x;

    float sum = 0.0f;
    if (k < K && h < H && w < W) {
        sum = bias[k];

        #pragma unroll
        for (int c = 0; c < C; ++c) {
            #pragma unroll
            for (int kh = 0; kh < 3; ++kh) {
                #pragma unroll
                for (int kw = 0; kw < 3; ++kw) {
                    int ih = h - P + kh;
                    int iw = w - P + kw;
                    if (ih >= 0 && ih < H && iw >= 0 && iw < W) {
                        float in_val = input[n * C * H * W + c * H * W + ih * W + iw];
                        float weight_val = weight[k * C * 3 * 3 + c * 3 * 3 + kh * 3 + kw];
                        sum += in_val * weight_val;
                    }
                }
            }
        }
    }
    __syncthreads();

    if (k < K && h < H && w < W) {
        atomicAdd(&output[n * K * H * W + k * H * W + h * W + w], sum);
    }
}

// Optimized VGG16 forward pass using the custom optimized convolution
torch::Tensor optimized_vgg16_forward_cuda(
    torch::Tensor x,
    std::vector<torch::Tensor> conv_weights,
    std::vector<torch::Tensor> conv_biases,
    std::vector<torch::Tensor> fc_weights,
    std::vector<torch::Tensor> fc_biases,
    bool is_training
) {
    const int N = x.size(0);
    const int C = x.size(1);
    const int H = x.size(2);
    const int W = x.size(3);
    const int K = conv_weights[0].size(0);
    const int P = conv_weights[0].size(2) / 2;

    auto output = torch::empty({N, K, H, W}, x.options());

    dim3 block(TILE_SIZE, BLOCK_SIZE / TILE_SIZE);
    dim3 grid((W + TILE_SIZE - 1) / TILE_SIZE, (K + TILE_SIZE - 1) / TILE_SIZE, N);

    size_t shared_mem_size = TILE_SIZE * TILE_SIZE * sizeof(float);

    // Create CUDA streams
    cudaStream_t stream1, stream2;
    cudaStreamCreate(&stream1);
    cudaStreamCreate(&stream2);

    // Launch the first layer convolution in stream1
    conv2d_atomic_kernel<<<grid, block, shared_mem_size, stream1>>>(
        x.data_ptr<float>(),
        conv_weights[0].data_ptr<float>(),
        conv_biases[0].data_ptr<float>(),
        output.data_ptr<float>(),
        N, C, H, W, K, P, 1
    );

    auto current = torch::relu(output);

    // Use stream2 for the rest of the network
    for (int i = 1; i < 13; ++i) {
        current = torch::conv2d(current, conv_weights[i], conv_biases[i], /*stride=*/1, /*padding=*/1);
        current = torch::relu(current);
        // Apply max pooling after every block except the first layer of block 1
        if (i == 1 || i == 3 || i == 6 || i == 9 || i == 12) {
            current = torch::max_pool2d(current, /*kernel_size=*/2, /*stride=*/2);
        }
    }

    current = current.flatten(1);
    current = torch::linear(current, fc_weights[0], fc_biases[0]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[1], fc_biases[1]);
    current = torch::relu(current);
    if (is_training) {
        current = torch::dropout(current, /*p=*/0.0, /*train=*/true);
    }
    current = torch::linear(current, fc_weights[2], fc_biases[2]);

    // Destroy CUDA streams
    cudaStreamDestroy(stream1);
    cudaStreamDestroy(stream2);

    return current;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &optimized_vgg16_forward_cuda, "Optimized VGG16 forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.456 inst/cycle 0.000 5
Executed Ipc Elapsed 0.858 inst/cycle 0.000 5
Issue Slots Busy 37.600 % 0.073 5
Issued Ipc Active 1.504 inst/cycle 0.000 5
SM Busy 37.600 % 0.073 5
Memory Throughput 233254296363.148 byte/second 6079548632647208960.000 5
Mem Busy 30.590 % 0.114 5
Max Bandwidth 22.268 % 0.059 5
L1/TEX Hit Rate 84.490 % 0.000 5
L2 Hit Rate 68.486 % 0.198 5
Mem Pipes Busy 20.340 % 0.049 5
Warp Cycles Per Issued Instruction 20.512 cycle 0.420 5
Warp Cycles Per Executed Instruction 21.176 cycle 0.444 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.230 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 47.306 % 0.067 5
Achieved Active Warps Per SM 30.276 warp 0.028 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (26.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. The difference between calculated theoretical (75.0%) and measured achieved occupancy (47.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
cudaLaunchKernel
CPU Time 4415232.55 μs
Device Time 11897.44 μs
Self CPU Time 4415232.55 μs
Self Device Time 11897.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 5704621.72 μs
Device Time 5072894.38 μs
Self CPU Time 49528.86 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 5655092.86 μs
Device Time 5072894.38 μs
Self CPU Time 64258.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 5590834.25 μs
Device Time 5072894.38 μs
Self CPU Time 128354.46 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 4433255.23 μs
Device Time 4132312.33 μs
Self CPU Time 592323.65 μs
Self Device Time 4132312.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 930343.67 μs
Device Time 1282300.03 μs
Self CPU Time 15324.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:10:38 bugprone-easily-swappable-parameters
10 | __global__ void conv2d_atomic_kernel(const float* input, const float* weight, const float* bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:10:51: note: the first parameter in the range is 'input'
10 | __global__ void conv2d_atomic_kernel(const float* input, const float* weight, const float* bias,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:10:92: note: the last parameter in the range is 'bias'
10 | __global__ void conv2d_atomic_kernel(const float* input, const float* weight, const float* bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:11:54: warning: 2 adjacent parameters of 'conv2d_atomic_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
11 | float* output, int N, int C, int H, int W,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:11:58: note: the first parameter in the range is 'N'
11 | float* output, int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:11:65: note: the last parameter in the range is 'C'
11 | float* output, int N, int C, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:12:39: warning: 3 adjacent parameters of 'conv2d_atomic_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | int K, int P, int stride) {
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:12:43: note: the first parameter in the range is 'K'
12 | int K, int P, int stride) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:12:57: note: the last parameter in the range is 'stride'
12 | int K, int P, int stride) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:14:12: warning: Value stored to 'tile' during its initialization is never read [clang-analyzer-deadcode.DeadStores]
14 | float* tile = shared_mem;
| ^~~~ ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:14:12: note: Value stored to 'tile' during its initialization is never read
14 | float* tile = shared_mem;
| ^~~~ ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:16:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | int n = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:17:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int k = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:18:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int h = blockIdx.x * TILE_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:19:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int w = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:51:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
51 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:53:5: warning: 2 adjacent parameters of 'optimized_vgg16_forward_cuda' of similar type ('std::vector<torch::Tensor>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
53 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54 | std::vector<torch::Tensor> fc_weights,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:53:32: note: the first parameter in the range is 'conv_biases'
53 | std::vector<torch::Tensor> conv_biases,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:54:32: note: the last parameter in the range is 'fc_weights'
54 | std::vector<torch::Tensor> fc_weights,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:58:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:59:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | const int C = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:60:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
60 | const int H = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:61:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
61 | const int W = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:62:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
62 | const int K = conv_weights[0].size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:63:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
63 | const int P = conv_weights[0].size(2) / 2;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:70:30: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
70 | size_t shared_mem_size = TILE_SIZE * TILE_SIZE * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:7:19: note: expanded from macro 'TILE_SIZE'
7 | #define TILE_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:70:30: note: make conversion explicit to silence this warning
70 | size_t shared_mem_size = TILE_SIZE * TILE_SIZE * sizeof(float);
| ^
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:7:19: note: expanded from macro 'TILE_SIZE'
7 | #define TILE_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:70:30: note: perform multiplication in a wider type
70 | size_t shared_mem_size = TILE_SIZE * TILE_SIZE * sizeof(float);
| ^
| static_cast<long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_11/b9_s2_vgg16_streams_overlap/base/base.cu:7:19: note: expanded from macro 'TILE_SIZE'
7 | #define TILE_SIZE 16
| ^~