← Back to Leaderboard

The AI CUDA Engineer 👷

15_DenseNet12115_DenseNet121_manual_unroll_base

Level 3 • Task 15
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    params: nn.ParameterDict,
    is_training: bool,
) -> torch.Tensor:
    """
    Implements the DenseNet121 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        params (nn.ParameterDict): Dictionary of parameters
        is_training (bool): Whether to use training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Initial features
    x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["features_bn_mean"],
        params["features_bn_var"],
        params["features_bn_weight"],
        params["features_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def dense_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of a single dense layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None, stride=1, padding=1)
        x = F.dropout(x, p=0.0, training=is_training)
        return x

    def transition_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of transition layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None)
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        return x

    # Dense blocks and transitions
    for i in range(4):  # 4 dense blocks
        features = [x]
        for j in range(params[f"block{i}_num_layers"]):  # layers per block
            prefix = f"block{i}_layer{j}_"
            new_feature = dense_layer_fn(
                x,
                params[prefix + "bn_weight"],
                params[prefix + "bn_bias"],
                params[prefix + "bn_mean"],
                params[prefix + "bn_var"],
                params[prefix + "conv_weight"],
                is_training,
            )
            features.append(new_feature)
            x = torch.cat(features, 1)

        if i != 3:  # Apply transition after all blocks except last
            x = transition_layer_fn(
                x,
                params[f"transition{i}_bn_weight"],
                params[f"transition{i}_bn_bias"],
                params[f"transition{i}_bn_mean"],
                params[f"transition{i}_bn_var"],
                params[f"transition{i}_conv_weight"],
                is_training,
            )

    # Final layers
    x = F.batch_norm(
        x,
        params["final_bn_mean"],
        params["final_bn_var"],
        params["final_bn_weight"],
        params["final_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
    x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
    return x


class Model(nn.Module):
    def __init__(self, growth_rate=32, num_classes=1000):
        super(Model, self).__init__()

        self.params = nn.ParameterDict()
        block_layers = [6, 12, 24, 16]

        # Initial features parameters
        conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        bn = nn.BatchNorm2d(64)
        self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone())
        self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone())
        self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone())
        self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
        self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone())

        # Dense blocks parameters
        num_features = 64
        for i, num_layers in enumerate(block_layers):
            self.params[f"block{i}_num_layers"] = num_layers
            for j in range(num_layers):
                in_features = num_features + j * growth_rate
                prefix = f"block{i}_layer{j}_"

                bn = nn.BatchNorm2d(in_features)
                conv = nn.Conv2d(
                    in_features, growth_rate, kernel_size=3, padding=1, bias=False
                )

                self.params[prefix + "bn_weight"] = nn.Parameter(bn.weight.data.clone())
                self.params[prefix + "bn_bias"] = nn.Parameter(bn.bias.data.clone())
                self.params[prefix + "bn_mean"] = nn.Parameter(
                    bn.running_mean.data.clone()
                )
                self.params[prefix + "bn_var"] = nn.Parameter(
                    bn.running_var.data.clone()
                )
                self.params[prefix + "conv_weight"] = nn.Parameter(
                    conv.weight.data.clone()
                )

            num_features = num_features + num_layers * growth_rate

            # Transition layers parameters (except after last block)
            if i != len(block_layers) - 1:
                bn = nn.BatchNorm2d(num_features)
                conv = nn.Conv2d(
                    num_features, num_features // 2, kernel_size=1, bias=False
                )

                self.params[f"transition{i}_bn_weight"] = nn.Parameter(
                    bn.weight.data.clone()
                )
                self.params[f"transition{i}_bn_bias"] = nn.Parameter(
                    bn.bias.data.clone()
                )
                self.params[f"transition{i}_bn_mean"] = nn.Parameter(
                    bn.running_mean.data.clone()
                )
                self.params[f"transition{i}_bn_var"] = nn.Parameter(
                    bn.running_var.data.clone()
                )
                self.params[f"transition{i}_conv_weight"] = nn.Parameter(
                    conv.weight.data.clone()
                )

                num_features = num_features // 2

        # Final layers parameters
        bn = nn.BatchNorm2d(num_features)
        self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone())
        self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone())
        self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
        self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone())

        linear = nn.Linear(num_features, num_classes)
        self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone())
        self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


# Test configurations
batch_size = 10
num_classes = 10
height, width = 224, 224


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
        """
        :param num_layers: The number of layers in the dense block
        :param num_input_features: The number of input feature maps
        :param growth_rate: The growth rate for the dense block (new features added per layer)
        """
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
        self.layers = nn.ModuleList(layers)

    def _make_layer(self, in_features: int, growth_rate: int):
        """
        Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
        """
        return nn.Sequential(
            nn.BatchNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
            nn.Dropout(0.0)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
        """
        features = [x]
        for layer in self.layers:
            new_feature = layer(x)
            features.append(new_feature)
            x = torch.cat(features, 1)  # Concatenate along channel axis
        return x

class TransitionLayer(nn.Module):
    def __init__(self, num_input_features: int, num_output_features: int):
        """
        :param num_input_features: The number of input feature maps
        :param num_output_features: The number of output feature maps
        """
        super(TransitionLayer, self).__init__()
        self.transition = nn.Sequential(
            nn.BatchNorm2d(num_input_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Downsampled tensor with reduced number of feature maps
        """
        return self.transition(x)

class Model(nn.Module):
    def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
        """
        :param growth_rate: The growth rate of the DenseNet (new features added per layer)
        :param num_classes: The number of output classes for classification
        """
        super(Model, self).__init__()

        # Initial convolution and pooling
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        # Each dense block is followed by a transition layer, except the last one
        num_features = 64
        block_layers = [6, 12, 24, 16]  # Corresponding layers in DenseNet121

        self.dense_blocks = nn.ModuleList()
        self.transition_layers = nn.ModuleList()

        for i, num_layers in enumerate(block_layers):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
            self.dense_blocks.append(block)
            num_features = num_features + num_layers * growth_rate

            if i != len(block_layers) - 1:
                transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
                self.transition_layers.append(transition)
                num_features = num_features // 2

        # Final batch norm and classifier
        self.final_bn = nn.BatchNorm2d(num_features)
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        :param x: Input tensor of shape (batch_size, 3, height, width)
        :return: Output tensor of shape (batch_size, num_classes)
        """
        x = self.features(x)

        for i, block in enumerate(self.dense_blocks):
            x = block(x)
            if i != len(self.dense_blocks) - 1:
                x = self.transition_layers[i](x)

        x = self.final_bn(x)
        x = F.relu(x, inplace=True)
        x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Testing the DenseNet121 model
batch_size = 10
num_classes = 10
height, width = 224, 224  # Standard input size for DenseNet

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [32, num_classes]

Kernel Information

Related Kernels (Level 3, Task 15 • 15_DenseNet121)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 15_DenseNet121 4.19 1.42 0.90
🥇 optimized_dense_net_base 4.19 1.42 0.90
🥉 15_densenet121_warp_optimized_base_base 4.20 1.42 0.90
🥉 15_densenet121_atomic_optimized_base 4.20 1.42 0.90
5 15_densenet121_ldg_optimized_base 4.20 1.42 0.90
5 15_densenet121_fused_bn_relu_base 4.20 1.42 0.90
7 15_DenseNet121_unrolled_base 4.20 1.41 0.90
8 15_densenet121_unroll_batched_base_base 4.20 1.41 0.90
9 15_densenet121_reduced_sync_base_base 4.21 1.41 0.90
10 15_densenet121_mem_coalesce_base 4.21 1.41 0.90
11 15_DenseNet121_manual_unroll_base 4.22 1.41 0.90
12 15_densenet121_atomic_optimization_edit_1 4.22 1.41 0.90
13 15_DenseNet121_unroll_manual_base 4.23 1.41 0.89
13 densenet121_warp_aligned_base_base 4.23 1.41 0.89
15 15_densenet121_strided_base 4.23 1.41 0.89
16 15_densenet121_ldg_fused_relu_base 4.23 1.40 0.89
16 15_DenseNet121_coalesced_edit_1 4.23 1.40 0.89
18 15_densenet121_strided_edit_1 4.24 1.40 0.89
19 15_densenet121_strided_loops_base 4.24 1.40 0.89
20 15_densenet121_atomic_optimization_base 4.24 1.40 0.89
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <vector>
#include <string>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

at::Tensor dense_layer_fn(
    at::Tensor x,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_mean,
    at::Tensor bn_var,
    at::Tensor conv_weight,
    bool is_training
) {
    x = at::batch_norm(
        x, bn_weight, bn_bias, bn_mean, bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::conv2d(x, conv_weight, /*bias=*/{}, /*stride=*/{1, 1}, /*padding=*/{1, 1});
    x = at::dropout(x, /*p=*/0.0, is_training);
    return x;
}

at::Tensor transition_layer_fn(
    at::Tensor x,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_mean,
    at::Tensor bn_var,
    at::Tensor conv_weight,
    bool is_training
) {
    x = at::batch_norm(
        x, bn_weight, bn_bias, bn_mean, bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::conv2d(x, conv_weight);
    x = at::avg_pool2d(x, /*kernel_size=*/{2, 2}, /*stride=*/{2, 2});
    return x;
}

at::Tensor module_fn(
    at::Tensor x,
    py::object params,
    bool is_training
) {
    // Helper function to get parameters
    auto get_param = [&](const std::string& key) -> at::Tensor {
        return params.attr("__getitem__")(key.c_str()).cast<at::Tensor>();
    };

    // Initial features
    auto features_conv_weight = get_param("features_conv_weight");
    x = at::conv2d(x, features_conv_weight, /*bias=*/{}, /*stride=*/{2, 2}, /*padding=*/{3, 3});

    auto features_bn_mean = get_param("features_bn_mean");
    auto features_bn_var = get_param("features_bn_var");
    auto features_bn_weight = get_param("features_bn_weight");
    auto features_bn_bias = get_param("features_bn_bias");

    x = at::batch_norm(
        x, features_bn_weight, features_bn_bias, features_bn_mean, features_bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::max_pool2d(x, /*kernel_size=*/{3, 3}, /*stride=*/{2, 2}, /*padding=*/{1, 1});

    std::vector<int> num_layers = {6, 12, 24, 16};  // Layers per block for DenseNet121

    // Dense blocks and transitions
    for (int i = 0; i < 4; ++i) {
        std::vector<at::Tensor> features;
        features.push_back(x);

        // Manual unrolling
        for (int j = 0; j < num_layers[i]; j += 4) {
            // Process four layers at a time if possible
            for (int k = j; k < std::min(j + 4, num_layers[i]); ++k) {
                std::string prefix = "block" + std::to_string(i) + "_layer" + std::to_string(k) + "_";

                auto bn_weight = get_param(prefix + "bn_weight");
                auto bn_bias = get_param(prefix + "bn_bias");
                auto bn_mean = get_param(prefix + "bn_mean");
                auto bn_var = get_param(prefix + "bn_var");
                auto conv_weight = get_param(prefix + "conv_weight");

                at::Tensor new_feature = dense_layer_fn(
                    x,
                    bn_weight,
                    bn_bias,
                    bn_mean,
                    bn_var,
                    conv_weight,
                    is_training
                );

                features.push_back(new_feature);

                x = at::cat(features, 1);
            }
        }

        if (i != 3) {  // Apply transition after all blocks except the last
            std::string prefix = "transition" + std::to_string(i) + "_";

            auto bn_weight = get_param(prefix + "bn_weight");
            auto bn_bias = get_param(prefix + "bn_bias");
            auto bn_mean = get_param(prefix + "bn_mean");
            auto bn_var = get_param(prefix + "bn_var");
            auto conv_weight = get_param(prefix + "conv_weight");

            x = transition_layer_fn(
                x,
                bn_weight,
                bn_bias,
                bn_mean,
                bn_var,
                conv_weight,
                is_training
            );
        }
    }

    // Final layers
    auto final_bn_mean = get_param("final_bn_mean");
    auto final_bn_var = get_param("final_bn_var");
    auto final_bn_weight = get_param("final_bn_weight");
    auto final_bn_bias = get_param("final_bn_bias");

    x = at::batch_norm(
        x, final_bn_weight, final_bn_bias, final_bn_mean, final_bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::adaptive_avg_pool2d(x, {1, 1}).reshape({x.size(0), -1});

    auto classifier_weight = get_param("classifier_weight");
    auto classifier_bias = get_param("classifier_bias");
    x = at::linear(x, classifier_weight, classifier_bias);

    return x;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn, "DenseNet121 forward");
}
Operation / Metric Value Unit
aten::conv2d
CPU Time 3378270.56 μs
Device Time 2898044.27 μs
Self CPU Time 139261.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3239008.99 μs
Device Time 2898044.27 μs
Self CPU Time 175826.68 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3063182.31 μs
Device Time 2898044.27 μs
Self CPU Time 203818.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 2859363.66 μs
Device Time 2898044.27 μs
Self CPU Time 1467644.92 μs
Self Device Time 2898044.27 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 3103785.54 μs
Device Time 1284686.01 μs
Self CPU Time 152117.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 2951667.69 μs
Device Time 1284686.01 μs
Self CPU Time 126092.53 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B