import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
params: nn.ParameterDict,
is_training: bool,
) -> torch.Tensor:
"""
Implements the DenseNet121 module.
Args:
x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
params (nn.ParameterDict): Dictionary of parameters
is_training (bool): Whether to use training mode
Returns:
torch.Tensor: Output tensor, shape (batch_size, num_classes)
"""
# Initial features
x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
x = F.batch_norm(
x,
params["features_bn_mean"],
params["features_bn_var"],
params["features_bn_weight"],
params["features_bn_bias"],
training=is_training,
)
x = F.relu(x, inplace=True)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
def dense_layer_fn(
x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
):
"""
Functional version of a single dense layer
"""
x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
x = F.relu(x, inplace=True)
x = F.conv2d(x, conv_weight, bias=None, stride=1, padding=1)
x = F.dropout(x, p=0.0, training=is_training)
return x
def transition_layer_fn(
x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
):
"""
Functional version of transition layer
"""
x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
x = F.relu(x, inplace=True)
x = F.conv2d(x, conv_weight, bias=None)
x = F.avg_pool2d(x, kernel_size=2, stride=2)
return x
# Dense blocks and transitions
for i in range(4): # 4 dense blocks
features = [x]
for j in range(params[f"block{i}_num_layers"]): # layers per block
prefix = f"block{i}_layer{j}_"
new_feature = dense_layer_fn(
x,
params[prefix + "bn_weight"],
params[prefix + "bn_bias"],
params[prefix + "bn_mean"],
params[prefix + "bn_var"],
params[prefix + "conv_weight"],
is_training,
)
features.append(new_feature)
x = torch.cat(features, 1)
if i != 3: # Apply transition after all blocks except last
x = transition_layer_fn(
x,
params[f"transition{i}_bn_weight"],
params[f"transition{i}_bn_bias"],
params[f"transition{i}_bn_mean"],
params[f"transition{i}_bn_var"],
params[f"transition{i}_conv_weight"],
is_training,
)
# Final layers
x = F.batch_norm(
x,
params["final_bn_mean"],
params["final_bn_var"],
params["final_bn_weight"],
params["final_bn_bias"],
training=is_training,
)
x = F.relu(x, inplace=True)
x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
return x
class Model(nn.Module):
def __init__(self, growth_rate=32, num_classes=1000):
super(Model, self).__init__()
self.params = nn.ParameterDict()
block_layers = [6, 12, 24, 16]
# Initial features parameters
conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
bn = nn.BatchNorm2d(64)
self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone())
self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone())
self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone())
self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone())
# Dense blocks parameters
num_features = 64
for i, num_layers in enumerate(block_layers):
self.params[f"block{i}_num_layers"] = num_layers
for j in range(num_layers):
in_features = num_features + j * growth_rate
prefix = f"block{i}_layer{j}_"
bn = nn.BatchNorm2d(in_features)
conv = nn.Conv2d(
in_features, growth_rate, kernel_size=3, padding=1, bias=False
)
self.params[prefix + "bn_weight"] = nn.Parameter(bn.weight.data.clone())
self.params[prefix + "bn_bias"] = nn.Parameter(bn.bias.data.clone())
self.params[prefix + "bn_mean"] = nn.Parameter(
bn.running_mean.data.clone()
)
self.params[prefix + "bn_var"] = nn.Parameter(
bn.running_var.data.clone()
)
self.params[prefix + "conv_weight"] = nn.Parameter(
conv.weight.data.clone()
)
num_features = num_features + num_layers * growth_rate
# Transition layers parameters (except after last block)
if i != len(block_layers) - 1:
bn = nn.BatchNorm2d(num_features)
conv = nn.Conv2d(
num_features, num_features // 2, kernel_size=1, bias=False
)
self.params[f"transition{i}_bn_weight"] = nn.Parameter(
bn.weight.data.clone()
)
self.params[f"transition{i}_bn_bias"] = nn.Parameter(
bn.bias.data.clone()
)
self.params[f"transition{i}_bn_mean"] = nn.Parameter(
bn.running_mean.data.clone()
)
self.params[f"transition{i}_bn_var"] = nn.Parameter(
bn.running_var.data.clone()
)
self.params[f"transition{i}_conv_weight"] = nn.Parameter(
conv.weight.data.clone()
)
num_features = num_features // 2
# Final layers parameters
bn = nn.BatchNorm2d(num_features)
self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone())
self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone())
self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone())
linear = nn.Linear(num_features, num_classes)
self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone())
self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone())
def forward(self, x, fn=module_fn):
return fn(x, self.params, self.training)
# Test configurations
batch_size = 10
num_classes = 10
height, width = 224, 224
def get_inputs():
return [torch.randn(batch_size, 3, height, width)]
def get_init_inputs():
return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F
class DenseBlock(nn.Module):
def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
"""
:param num_layers: The number of layers in the dense block
:param num_input_features: The number of input feature maps
:param growth_rate: The growth rate for the dense block (new features added per layer)
"""
super(DenseBlock, self).__init__()
layers = []
for i in range(num_layers):
layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
self.layers = nn.ModuleList(layers)
def _make_layer(self, in_features: int, growth_rate: int):
"""
Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
"""
return nn.Sequential(
nn.BatchNorm2d(in_features),
nn.ReLU(inplace=True),
nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
nn.Dropout(0.0)
)
def forward(self, x):
"""
:param x: Input tensor of shape (batch_size, num_input_features, height, width)
:return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
"""
features = [x]
for layer in self.layers:
new_feature = layer(x)
features.append(new_feature)
x = torch.cat(features, 1) # Concatenate along channel axis
return x
class TransitionLayer(nn.Module):
def __init__(self, num_input_features: int, num_output_features: int):
"""
:param num_input_features: The number of input feature maps
:param num_output_features: The number of output feature maps
"""
super(TransitionLayer, self).__init__()
self.transition = nn.Sequential(
nn.BatchNorm2d(num_input_features),
nn.ReLU(inplace=True),
nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
nn.AvgPool2d(kernel_size=2, stride=2)
)
def forward(self, x):
"""
:param x: Input tensor of shape (batch_size, num_input_features, height, width)
:return: Downsampled tensor with reduced number of feature maps
"""
return self.transition(x)
class Model(nn.Module):
def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
"""
:param growth_rate: The growth rate of the DenseNet (new features added per layer)
:param num_classes: The number of output classes for classification
"""
super(Model, self).__init__()
# Initial convolution and pooling
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
# Each dense block is followed by a transition layer, except the last one
num_features = 64
block_layers = [6, 12, 24, 16] # Corresponding layers in DenseNet121
self.dense_blocks = nn.ModuleList()
self.transition_layers = nn.ModuleList()
for i, num_layers in enumerate(block_layers):
block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
self.dense_blocks.append(block)
num_features = num_features + num_layers * growth_rate
if i != len(block_layers) - 1:
transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
self.transition_layers.append(transition)
num_features = num_features // 2
# Final batch norm and classifier
self.final_bn = nn.BatchNorm2d(num_features)
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: Input tensor of shape (batch_size, 3, height, width)
:return: Output tensor of shape (batch_size, num_classes)
"""
x = self.features(x)
for i, block in enumerate(self.dense_blocks):
x = block(x)
if i != len(self.dense_blocks) - 1:
x = self.transition_layers[i](x)
x = self.final_bn(x)
x = F.relu(x, inplace=True)
x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
x = self.classifier(x)
return x
# Testing the DenseNet121 model
batch_size = 10
num_classes = 10
height, width = 224, 224 # Standard input size for DenseNet
def get_inputs():
return [torch.randn(batch_size, 3, height, width)]
def get_init_inputs():
return [32, num_classes]
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <vector>
#include <string>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <cmath>
namespace py = pybind11;
// Custom CUDA kernel for fused BatchNorm and ReLU
// Assumes input is a 4D tensor in NCHW format.
__global__ void fused_bn_relu_kernel(const float* __restrict__ input,
float* __restrict__ output,
int N, int C, int H, int W,
const float* __restrict__ weight,
const float* __restrict__ bias,
const float* __restrict__ running_mean,
const float* __restrict__ running_var,
float eps) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int numel = N * C * H * W;
if (idx < numel) {
int hw = H * W;
// Compute channel index assuming contiguous NCHW layout
int c = (idx / hw) % C;
float x = input[idx];
// Use __ldg to leverage read-only cache for parameters
float mean = __ldg(&running_mean[c]);
float var = __ldg(&running_var[c]);
float gamma = __ldg(&weight[c]);
float beta = __ldg(&bias[c]);
float norm = (x - mean) / sqrtf(var + eps);
float y = gamma * norm + beta;
// Fused ReLU
output[idx] = y > 0.0f ? y : 0.0f;
}
}
// Fused BatchNorm and ReLU forward function
at::Tensor fused_bn_relu_forward(
at::Tensor input,
at::Tensor weight,
at::Tensor bias,
at::Tensor running_mean,
at::Tensor running_var,
bool training,
double momentum,
double eps) {
// For training, fallback to standard operations to ensure correctness.
if (training) {
auto bn_out = at::batch_norm(input, weight, bias, running_mean, running_var,
training, momentum, eps, true);
return at::relu(bn_out);
}
// Ensure input is contiguous for coalesced accesses
if (!input.is_contiguous()) {
input = input.contiguous();
}
// Create output tensor
auto output = at::empty_like(input);
// Assuming input is 4D: N x C x H x W
int N = input.size(0);
int C = input.size(1);
int H = input.size(2);
int W = input.size(3);
int numel = input.numel();
const int threads = 256;
const int blocks = (numel + threads - 1) / threads;
fused_bn_relu_kernel<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
input.data_ptr<float>(),
output.data_ptr<float>(),
N, C, H, W,
weight.data_ptr<float>(),
bias.data_ptr<float>(),
running_mean.data_ptr<float>(),
running_var.data_ptr<float>(),
static_cast<float>(eps));
// Synchronize to ensure kernel completion
cudaDeviceSynchronize();
return output;
}
// Dense layer function using fused BN+ReLU
at::Tensor dense_layer_fn(
at::Tensor x,
at::Tensor bn_weight,
at::Tensor bn_bias,
at::Tensor bn_mean,
at::Tensor bn_var,
at::Tensor conv_weight,
bool is_training
) {
x = fused_bn_relu_forward(x, bn_weight, bn_bias, bn_mean, bn_var,
is_training, 0.1, 1e-5);
x = at::conv2d(x, conv_weight, /*bias=*/{}, /*stride=*/{1, 1}, /*padding=*/{1, 1});
x = at::dropout(x, /*p=*/0.0, is_training);
return x;
}
// Transition layer function using fused BN+ReLU
at::Tensor transition_layer_fn(
at::Tensor x,
at::Tensor bn_weight,
at::Tensor bn_bias,
at::Tensor bn_mean,
at::Tensor bn_var,
at::Tensor conv_weight,
bool is_training
) {
x = fused_bn_relu_forward(x, bn_weight, bn_bias, bn_mean, bn_var,
is_training, 0.1, 1e-5);
x = at::conv2d(x, conv_weight);
x = at::avg_pool2d(x, /*kernel_size=*/{2, 2}, /*stride=*/{2, 2});
return x;
}
// Main module function implementing DenseNet121
at::Tensor module_fn(
at::Tensor x,
py::object params,
bool is_training
) {
auto get_param = [&](const std::string &key) -> at::Tensor {
return params.attr("__getitem__")(key.c_str()).cast<at::Tensor>();
};
auto features_conv_weight = get_param("features_conv_weight");
x = at::conv2d(x, features_conv_weight, /*bias=*/{}, 2, 3);
auto features_bn_mean = get_param("features_bn_mean");
auto features_bn_var = get_param("features_bn_var");
auto features_bn_weight = get_param("features_bn_weight");
auto features_bn_bias = get_param("features_bn_bias");
x = fused_bn_relu_forward(x, features_bn_weight, features_bn_bias,
features_bn_mean, features_bn_var,
is_training, 0.1, 1e-5);
x = at::max_pool2d(x, 3, 2, 1);
std::vector<int> num_layers = {6, 12, 24, 16};
for (int i = 0; i < 4; ++i) {
std::vector<at::Tensor> features = {x};
for (int j = 0; j < num_layers[i]; ++j) {
std::string prefix = "block" + std::to_string(i) + "_layer" + std::to_string(j) + "_";
auto bn_weight = get_param(prefix + "bn_weight");
auto bn_bias = get_param(prefix + "bn_bias");
auto bn_mean = get_param(prefix + "bn_mean");
auto bn_var = get_param(prefix + "bn_var");
auto conv_weight = get_param(prefix + "conv_weight");
at::Tensor new_feature = dense_layer_fn(x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training);
features.push_back(new_feature);
x = at::cat(features, 1);
}
if (i != 3) {
std::string prefix = "transition" + std::to_string(i) + "_";
auto bn_weight = get_param(prefix + "bn_weight");
auto bn_bias = get_param(prefix + "bn_bias");
auto bn_mean = get_param(prefix + "bn_mean");
auto bn_var = get_param(prefix + "bn_var");
auto conv_weight = get_param(prefix + "conv_weight");
x = transition_layer_fn(x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training);
}
}
auto final_bn_mean = get_param("final_bn_mean");
auto final_bn_var = get_param("final_bn_var");
auto final_bn_weight = get_param("final_bn_weight");
auto final_bn_bias = get_param("final_bn_bias");
x = fused_bn_relu_forward(x, final_bn_weight, final_bn_bias,
final_bn_mean, final_bn_var,
is_training, 0.1, 1e-5);
x = at::adaptive_avg_pool2d(x, {1, 1}).flatten(1);
auto classifier_weight = get_param("classifier_weight");
auto classifier_bias = get_param("classifier_bias");
x = at::linear(x, classifier_weight, classifier_bias);
return x;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &module_fn, "DenseNet121 forward");
}
Metric | Value | Unit | Variance | Samples |
---|
Rule | Description |
---|
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 5468913.01 | μs |
Device Time | 2671.23 | μs |
Self CPU Time | 713.70 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 5468199.31 | μs |
Device Time | 2671.23 | μs |
Self CPU Time | 1278.20 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 5455711.48 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 2249.72 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 5506909.83 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 5506909.83 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::conv2d | ||
CPU Time | 3361271.86 | μs |
Device Time | 2921569.76 | μs |
Self CPU Time | 134672.41 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 3226599.45 | μs |
Device Time | 2921569.76 | μs |
Self CPU Time | 168036.08 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 3058563.37 | μs |
Device Time | 2921569.76 | μs |
Self CPU Time | 194648.39 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::cudnn_convolution | ||
CPU Time | 2863914.99 | μs |
Device Time | 2921569.76 | μs |
Self CPU Time | 1465195.68 | μs |
Self Device Time | 2921569.76 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::batch_norm | ||
CPU Time | 3096005.05 | μs |
Device Time | 1288926.42 | μs |
Self CPU Time | 148499.33 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45309 warnings generated when compiling for host. Suppressed 45337 warnings (45290 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.