← Back to Leaderboard

The AI CUDA Engineer 👷

15_DenseNet12115_densenet121_atomic_optimization_edit_1

Level 3 • Task 15
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    params: nn.ParameterDict,
    is_training: bool,
) -> torch.Tensor:
    """
    Implements the DenseNet121 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        params (nn.ParameterDict): Dictionary of parameters
        is_training (bool): Whether to use training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Initial features
    x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["features_bn_mean"],
        params["features_bn_var"],
        params["features_bn_weight"],
        params["features_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def dense_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of a single dense layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None, stride=1, padding=1)
        x = F.dropout(x, p=0.0, training=is_training)
        return x

    def transition_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of transition layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None)
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        return x

    # Dense blocks and transitions
    for i in range(4):  # 4 dense blocks
        features = [x]
        for j in range(params[f"block{i}_num_layers"]):  # layers per block
            prefix = f"block{i}_layer{j}_"
            new_feature = dense_layer_fn(
                x,
                params[prefix + "bn_weight"],
                params[prefix + "bn_bias"],
                params[prefix + "bn_mean"],
                params[prefix + "bn_var"],
                params[prefix + "conv_weight"],
                is_training,
            )
            features.append(new_feature)
            x = torch.cat(features, 1)

        if i != 3:  # Apply transition after all blocks except last
            x = transition_layer_fn(
                x,
                params[f"transition{i}_bn_weight"],
                params[f"transition{i}_bn_bias"],
                params[f"transition{i}_bn_mean"],
                params[f"transition{i}_bn_var"],
                params[f"transition{i}_conv_weight"],
                is_training,
            )

    # Final layers
    x = F.batch_norm(
        x,
        params["final_bn_mean"],
        params["final_bn_var"],
        params["final_bn_weight"],
        params["final_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
    x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
    return x


class Model(nn.Module):
    def __init__(self, growth_rate=32, num_classes=1000):
        super(Model, self).__init__()

        self.params = nn.ParameterDict()
        block_layers = [6, 12, 24, 16]

        # Initial features parameters
        conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        bn = nn.BatchNorm2d(64)
        self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone())
        self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone())
        self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone())
        self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
        self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone())

        # Dense blocks parameters
        num_features = 64
        for i, num_layers in enumerate(block_layers):
            self.params[f"block{i}_num_layers"] = num_layers
            for j in range(num_layers):
                in_features = num_features + j * growth_rate
                prefix = f"block{i}_layer{j}_"

                bn = nn.BatchNorm2d(in_features)
                conv = nn.Conv2d(
                    in_features, growth_rate, kernel_size=3, padding=1, bias=False
                )

                self.params[prefix + "bn_weight"] = nn.Parameter(bn.weight.data.clone())
                self.params[prefix + "bn_bias"] = nn.Parameter(bn.bias.data.clone())
                self.params[prefix + "bn_mean"] = nn.Parameter(
                    bn.running_mean.data.clone()
                )
                self.params[prefix + "bn_var"] = nn.Parameter(
                    bn.running_var.data.clone()
                )
                self.params[prefix + "conv_weight"] = nn.Parameter(
                    conv.weight.data.clone()
                )

            num_features = num_features + num_layers * growth_rate

            # Transition layers parameters (except after last block)
            if i != len(block_layers) - 1:
                bn = nn.BatchNorm2d(num_features)
                conv = nn.Conv2d(
                    num_features, num_features // 2, kernel_size=1, bias=False
                )

                self.params[f"transition{i}_bn_weight"] = nn.Parameter(
                    bn.weight.data.clone()
                )
                self.params[f"transition{i}_bn_bias"] = nn.Parameter(
                    bn.bias.data.clone()
                )
                self.params[f"transition{i}_bn_mean"] = nn.Parameter(
                    bn.running_mean.data.clone()
                )
                self.params[f"transition{i}_bn_var"] = nn.Parameter(
                    bn.running_var.data.clone()
                )
                self.params[f"transition{i}_conv_weight"] = nn.Parameter(
                    conv.weight.data.clone()
                )

                num_features = num_features // 2

        # Final layers parameters
        bn = nn.BatchNorm2d(num_features)
        self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone())
        self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone())
        self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone())
        self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone())

        linear = nn.Linear(num_features, num_classes)
        self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone())
        self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


# Test configurations
batch_size = 10
num_classes = 10
height, width = 224, 224


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
        """
        :param num_layers: The number of layers in the dense block
        :param num_input_features: The number of input feature maps
        :param growth_rate: The growth rate for the dense block (new features added per layer)
        """
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
        self.layers = nn.ModuleList(layers)

    def _make_layer(self, in_features: int, growth_rate: int):
        """
        Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
        """
        return nn.Sequential(
            nn.BatchNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
            nn.Dropout(0.0)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
        """
        features = [x]
        for layer in self.layers:
            new_feature = layer(x)
            features.append(new_feature)
            x = torch.cat(features, 1)  # Concatenate along channel axis
        return x

class TransitionLayer(nn.Module):
    def __init__(self, num_input_features: int, num_output_features: int):
        """
        :param num_input_features: The number of input feature maps
        :param num_output_features: The number of output feature maps
        """
        super(TransitionLayer, self).__init__()
        self.transition = nn.Sequential(
            nn.BatchNorm2d(num_input_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Downsampled tensor with reduced number of feature maps
        """
        return self.transition(x)

class Model(nn.Module):
    def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
        """
        :param growth_rate: The growth rate of the DenseNet (new features added per layer)
        :param num_classes: The number of output classes for classification
        """
        super(Model, self).__init__()

        # Initial convolution and pooling
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        # Each dense block is followed by a transition layer, except the last one
        num_features = 64
        block_layers = [6, 12, 24, 16]  # Corresponding layers in DenseNet121

        self.dense_blocks = nn.ModuleList()
        self.transition_layers = nn.ModuleList()

        for i, num_layers in enumerate(block_layers):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
            self.dense_blocks.append(block)
            num_features = num_features + num_layers * growth_rate

            if i != len(block_layers) - 1:
                transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
                self.transition_layers.append(transition)
                num_features = num_features // 2

        # Final batch norm and classifier
        self.final_bn = nn.BatchNorm2d(num_features)
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        :param x: Input tensor of shape (batch_size, 3, height, width)
        :return: Output tensor of shape (batch_size, num_classes)
        """
        x = self.features(x)

        for i, block in enumerate(self.dense_blocks):
            x = block(x)
            if i != len(self.dense_blocks) - 1:
                x = self.transition_layers[i](x)

        x = self.final_bn(x)
        x = F.relu(x, inplace=True)
        x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Testing the DenseNet121 model
batch_size = 10
num_classes = 10
height, width = 224, 224  # Standard input size for DenseNet

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [32, num_classes]

Kernel Information

Related Kernels (Level 3, Task 15 • 15_DenseNet121)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 15_DenseNet121 4.19 1.42 0.90
🥇 optimized_dense_net_base 4.19 1.42 0.90
🥉 15_densenet121_warp_optimized_base_base 4.20 1.42 0.90
🥉 15_densenet121_atomic_optimized_base 4.20 1.42 0.90
5 15_densenet121_ldg_optimized_base 4.20 1.42 0.90
5 15_densenet121_fused_bn_relu_base 4.20 1.42 0.90
7 15_DenseNet121_unrolled_base 4.20 1.41 0.90
8 15_densenet121_unroll_batched_base_base 4.20 1.41 0.90
9 15_densenet121_reduced_sync_base_base 4.21 1.41 0.90
10 15_densenet121_mem_coalesce_base 4.21 1.41 0.90
11 15_DenseNet121_manual_unroll_base 4.22 1.41 0.90
12 15_densenet121_atomic_optimization_edit_1 4.22 1.41 0.90
13 15_DenseNet121_unroll_manual_base 4.23 1.41 0.89
13 densenet121_warp_aligned_base_base 4.23 1.41 0.89
15 15_densenet121_strided_base 4.23 1.41 0.89
16 15_densenet121_ldg_fused_relu_base 4.23 1.40 0.89
16 15_DenseNet121_coalesced_edit_1 4.23 1.40 0.89
18 15_densenet121_strided_edit_1 4.24 1.40 0.89
19 15_densenet121_strided_loops_base 4.24 1.40 0.89
20 15_densenet121_atomic_optimization_base 4.24 1.40 0.89
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>
#include <vector>
#include <string>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Warp-level reduction using __shfl_down_sync; avoids using shared memory for small reductions.
__inline__ __device__ float warpReduceSum(float val) {
    // Full mask for active threads within the warp
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

// Custom CUDA kernel to perform global average pooling (for output size 1) using warp-level primitives.
// Each block computes one output element corresponding to one (n, c) pair; the kernel processes H*W elements.
__global__ void globalAvgPoolKernel(const float* __restrict__ input,
                                     float* __restrict__ output,
                                     int C,
                                     int HW) {
    // Each block corresponds to one (n, c) pair. Grid dim.x = N * C.
    int idx = blockIdx.x;  // global index for (n, c)
    int lane = threadIdx.x; // thread index within the warp

    // Decode sample index and channel from block index
    int n = idx / C;
    int c = idx % C;

    // Compute starting offset for the (n, c) feature map
    int offset = (n * C + c) * HW;
    float sum = 0.0f;

    // Each thread processes a subset of the H*W elements with stride equal to blockDim.x
    for (int i = lane; i < HW; i += blockDim.x) {
        sum += input[offset + i];
    }

    // Perform warp-level reduction across the threads in the block
    sum = warpReduceSum(sum);

    // Use atomic operation to accumulate results from different warps
    __shared__ float blockSum;
    if (lane == 0) {
        blockSum = 0.0f;
    }
    __syncthreads();

    // Accumulate the sum of the warp into shared memory
    if (lane == 0) {
        atomicAdd(&blockSum, sum);
    }
    __syncthreads();

    // The first thread writes the result to global memory
    if (threadIdx.x == 0) {
        output[idx] = blockSum / static_cast<float>(HW);
    }
}

// Host function that wraps the global average pooling kernel call.
// Assumes input tensor x has shape [N, C, H, W] and is a CUDA tensor.
at::Tensor global_avg_pool(at::Tensor x) {
    auto input = x.contiguous();
    int N = input.size(0);
    int C = input.size(1);
    int H = input.size(2);
    int W = input.size(3);
    int HW = H * W;

    // Allocate output tensor of shape [N, C]
    at::Tensor output = at::zeros({N, C}, input.options());

    // Launch kernel: one block per output element, using one warp (32 threads) per block
    int threads = 32; // warp size
    int blocks = N * C;
    globalAvgPoolKernel<<<blocks, threads>>>(input.data_ptr<float>(), output.data_ptr<float>(), C, HW);
    // cudaDeviceSynchronize();

    return output;
}

// Dense layer used in DenseNet121: batch norm, relu, convolution, and dropout
at::Tensor dense_layer_fn(
    at::Tensor x,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_mean,
    at::Tensor bn_var,
    at::Tensor conv_weight,
    bool is_training
) {
    x = at::batch_norm(
        x, bn_weight, bn_bias, bn_mean, bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::conv2d(x, conv_weight, /*bias=*/{}, /*stride=*/{1, 1}, /*padding=*/{1, 1});
    x = at::dropout(x, /*p=*/0.0, is_training);
    return x;
}

// Transition layer used between dense blocks in DenseNet121
at::Tensor transition_layer_fn(
    at::Tensor x,
    at::Tensor bn_weight,
    at::Tensor bn_bias,
    at::Tensor bn_mean,
    at::Tensor bn_var,
    at::Tensor conv_weight,
    bool is_training
) {
    x = at::batch_norm(
        x, bn_weight, bn_bias, bn_mean, bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::conv2d(x, conv_weight);
    x = at::avg_pool2d(x, /*kernel_size=*/{2, 2}, /*stride=*/{2, 2});
    return x;
}

// Main module function implementing DenseNet121 forward pass using the custom global average pooling kernel
at::Tensor module_fn(
    at::Tensor x,
    py::object params,
    bool is_training
) {
    // Helper lambda to retrieve parameters
    auto get_param = [&](const std::string& key) -> at::Tensor {
        return params.attr("__getitem__")(key.c_str()).cast<at::Tensor>();
    };

    // Initial features
    auto features_conv_weight = get_param("features_conv_weight");
    x = at::conv2d(x, features_conv_weight, /*bias=*/{}, /*stride=*/{2, 2}, /*padding=*/{3, 3});

    auto features_bn_mean = get_param("features_bn_mean");
    auto features_bn_var = get_param("features_bn_var");
    auto features_bn_weight = get_param("features_bn_weight");
    auto features_bn_bias = get_param("features_bn_bias");

    x = at::batch_norm(
        x, features_bn_weight, features_bn_bias, features_bn_mean, features_bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    x = at::max_pool2d(x, /*kernel_size=*/{3, 3}, /*stride=*/{2, 2}, /*padding=*/{1, 1});

    std::vector<int> num_layers = {6, 12, 24, 16};  // Layers per block for DenseNet121

    // Dense blocks and transitions
    for (int i = 0; i < 4; ++i) {
        std::vector<at::Tensor> features;
        features.push_back(x);

        for (int j = 0; j < num_layers[i]; ++j) {
            std::string prefix = "block" + std::to_string(i) + "_layer" + std::to_string(j) + "_";

            auto bn_weight = get_param(prefix + "bn_weight");
            auto bn_bias = get_param(prefix + "bn_bias");
            auto bn_mean = get_param(prefix + "bn_mean");
            auto bn_var = get_param(prefix + "bn_var");
            auto conv_weight = get_param(prefix + "conv_weight");

            at::Tensor new_feature = dense_layer_fn(
                x,
                bn_weight,
                bn_bias,
                bn_mean,
                bn_var,
                conv_weight,
                is_training
            );

            features.push_back(new_feature);

            x = at::cat(features, 1);
        }

        if (i != 3) {  // Apply transition after all blocks except the last
            std::string prefix = "transition" + std::to_string(i) + "_";

            auto bn_weight = get_param(prefix + "bn_weight");
            auto bn_bias = get_param(prefix + "bn_bias");
            auto bn_mean = get_param(prefix + "bn_mean");
            auto bn_var = get_param(prefix + "bn_var");
            auto conv_weight = get_param(prefix + "conv_weight");

            x = transition_layer_fn(
                x,
                bn_weight,
                bn_bias,
                bn_mean,
                bn_var,
                conv_weight,
                is_training
            );
        }
    }

    // Final layers
    auto final_bn_mean = get_param("final_bn_mean");
    auto final_bn_var = get_param("final_bn_var");
    auto final_bn_weight = get_param("final_bn_weight");
    auto final_bn_bias = get_param("final_bn_bias");

    x = at::batch_norm(
        x, final_bn_weight, final_bn_bias, final_bn_mean, final_bn_var,
        is_training, 0.1, 1e-5, true
    );
    x = at::relu(x);
    
    // Use custom global average pooling kernel with warp-level primitives when running on CUDA
    if (x.is_cuda()) {
        // x is of shape [N, C, H, W]. Our kernel computes [N, C].
        x = global_avg_pool(x).view({x.size(0), -1});
    } else {
        // Fallback to PyTorch's adaptive average pooling on CPU
        x = at::adaptive_avg_pool2d(x, {1, 1}).reshape({x.size(0), -1});
    }

    auto classifier_weight = get_param("classifier_weight");
    auto classifier_bias = get_param("classifier_bias");
    x = at::linear(x, classifier_weight, classifier_bias);

    return x;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_fn, "DenseNet121 forward with warp-level reduction in avg pooling");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.796 inst/cycle 0.000 5
Executed Ipc Elapsed 0.518 inst/cycle 0.000 5
Issue Slots Busy 20.506 % 0.030 5
Issued Ipc Active 0.820 inst/cycle 0.000 5
SM Busy 20.506 % 0.030 5
Memory Throughput 206809363151.870 byte/second 2086699461141814016.000 5
Mem Busy 9.266 % 0.004 5
Max Bandwidth 6.564 % 0.002 5
L1/TEX Hit Rate 9.896 % 0.000 5
L2 Hit Rate 48.752 % 0.075 5
Mem Pipes Busy 10.394 % 0.005 5
Warp Cycles Per Issued Instruction 18.956 cycle 0.125 5
Warp Cycles Per Executed Instruction 19.560 cycle 0.131 5
Avg. Active Threads Per Warp 23.400 0.000 5
Avg. Not Predicated Off Threads Per Warp 21.230 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 128.000 block 0.000 5
Block Limit Shared Mem 56.000 block 0.000 5
Block Limit Warps 64.000 block 0.000 5
Theoretical Active Warps per SM 32.000 warp 0.000 5
Theoretical Occupancy 50.000 % 0.000 5
Achieved Occupancy 24.126 % 0.007 5
Achieved Active Warps Per SM 15.438 warp 0.003 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 23.4 threads being active per cycle. This is further reduced to 21.2 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. The difference between calculated theoretical (50.0%) and measured achieved occupancy (24.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv2d
CPU Time 3621999.26 μs
Device Time 3169369.53 μs
Self CPU Time 148317.38 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3473681.89 μs
Device Time 3169369.53 μs
Self CPU Time 184441.51 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3289240.38 μs
Device Time 3169369.53 μs
Self CPU Time 214691.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 3074549.14 μs
Device Time 3169369.53 μs
Self CPU Time 1580769.31 μs
Self Device Time 3169369.53 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 3370453.55 μs
Device Time 1398635.71 μs
Self CPU Time 163266.01 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_batch_norm_impl_index
CPU Time 3207187.54 μs
Device Time 1398635.71 μs
Self CPU Time 134052.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45287 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:27:15 bugprone-narrowing-conversions
27 | int idx = blockIdx.x; // global index for (n, c)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:28:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int lane = threadIdx.x; // thread index within the warp
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:39:37: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int i = lane; i < HW; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:67:39: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
67 | at::Tensor global_avg_pool(at::Tensor x) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:69:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
69 | int N = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:70:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
70 | int C = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:71:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | int H = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:72:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int W = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:93:5: warning: 2 adjacent parameters of 'dense_layer_fn' of similar type ('at::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
93 | at::Tensor bn_var,
| ^~~~~~~~~~~~~~~~~~
94 | at::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:93:16: note: the first parameter in the range is 'bn_var'
93 | at::Tensor bn_var,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:94:16: note: the last parameter in the range is 'conv_weight'
94 | at::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:94:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
94 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:113:5: warning: 2 adjacent parameters of 'transition_layer_fn' of similar type ('at::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
113 | at::Tensor bn_var,
| ^~~~~~~~~~~~~~~~~~
114 | at::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:113:16: note: the first parameter in the range is 'bn_var'
113 | at::Tensor bn_var,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:114:16: note: the last parameter in the range is 'conv_weight'
114 | at::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_15/b2_s1_15_densenet121_atomic_optimization/edit_1/edit_1.cu:114:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
114 | at::Tensor conv_weight,
| ^
| const &