← Back to Leaderboard

The AI CUDA Engineer 👷

16_DenseNet201fuse_bn_relu_opt_edit_1

Level 3 • Task 16
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x, params, is_training):
    """
    Functional version of Model forward pass
    """
    x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["features_bn_mean"],
        params["features_bn_var"],
        params["features_bn_weight"],
        params["features_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def dense_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of a single dense layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None, padding=1)
        x = F.dropout(x, p=0.0, training=is_training)
        return x

    def dense_block_fn(x, layer_params, is_training):
        """
        Functional version of DenseBlock
        """
        features = [x]
        for params in layer_params:
            new_feature = dense_layer_fn(x, *params, is_training)
            features.append(new_feature)
            x = torch.cat(features, 1)
        return x

    def transition_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of TransitionLayer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None)  # Removed kernel_size parameter
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        return x

    # Dense blocks and transitions
    for i in range(len(params["dense_blocks"])):
        x = dense_block_fn(x, params["dense_blocks"][i], is_training)
        if i != len(params["dense_blocks"]) - 1:
            x = transition_layer_fn(x, *params["transition_layers"][i], is_training)

    x = F.batch_norm(
        x,
        params["final_bn_mean"],
        params["final_bn_var"],
        params["final_bn_weight"],
        params["final_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
    x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
    return x


class Model(nn.Module):
    def __init__(self, growth_rate=32, num_classes=1000):
        super(Model, self).__init__()

        self.params = nn.ParameterDict()
        num_features = 64
        block_layers = [6, 12, 48, 32]
        device = "cuda"

        # Extract initial features parameters
        conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        bn = nn.BatchNorm2d(64)
        self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone()).to(
            device
        )
        self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(
            device
        )
        self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        # Extract dense blocks parameters
        self.params["dense_blocks"] = []
        for num_layers in block_layers:
            block_params = []
            for i in range(num_layers):
                in_features = num_features + i * growth_rate
                bn = nn.BatchNorm2d(in_features)
                conv = nn.Conv2d(
                    in_features, growth_rate, kernel_size=3, padding=1, bias=False
                )
                layer_params = [
                    nn.Parameter(bn.weight.data.clone()).to(device),
                    nn.Parameter(bn.bias.data.clone()).to(device),
                    nn.Parameter(bn.running_mean.data.clone()).to(device),
                    nn.Parameter(bn.running_var.data.clone()).to(device),
                    nn.Parameter(conv.weight.data.clone()).to(device),
                ]
                block_params.append(layer_params)
            self.params["dense_blocks"].append(block_params)
            num_features = num_features + num_layers * growth_rate

            # Extract transition layer parameters if not last block
            if len(self.params.get("transition_layers", [])) < len(block_layers) - 1:
                bn = nn.BatchNorm2d(num_features)
                conv = nn.Conv2d(
                    num_features, num_features // 2, kernel_size=1, bias=False
                )
                if "transition_layers" not in self.params:
                    self.params["transition_layers"] = []
                self.params["transition_layers"].append(
                    [
                        nn.Parameter(bn.weight.data.clone()).to(device),
                        nn.Parameter(bn.bias.data.clone()).to(device),
                        nn.Parameter(bn.running_mean.data.clone()).to(device),
                        nn.Parameter(bn.running_var.data.clone()).to(device),
                        nn.Parameter(conv.weight.data.clone()).to(device),
                    ]
                )
                num_features = num_features // 2

        # Extract final layers parameters
        bn = nn.BatchNorm2d(num_features)
        self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(device)
        self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        linear = nn.Linear(num_features, num_classes)
        self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone()).to(
            device
        )
        self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone()).to(
            device
        )

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


batch_size = 10
num_classes = 10
height, width = 224, 224


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
        """
        :param num_layers: The number of layers in the dense block
        :param num_input_features: The number of input feature maps
        :param growth_rate: The growth rate for the dense block (new features added per layer)
        """
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
        self.layers = nn.ModuleList(layers)

    def _make_layer(self, in_features: int, growth_rate: int):
        """
        Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
        """
        return nn.Sequential(
            nn.BatchNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
            nn.Dropout(0.0)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
        """
        features = [x]
        for layer in self.layers:
            new_feature = layer(x)
            features.append(new_feature)
            x = torch.cat(features, 1)  # Concatenate along channel axis
        return x

class TransitionLayer(nn.Module):
    def __init__(self, num_input_features: int, num_output_features: int):
        """
        :param num_input_features: The number of input feature maps
        :param num_output_features: The number of output feature maps
        """
        super(TransitionLayer, self).__init__()
        self.transition = nn.Sequential(
            nn.BatchNorm2d(num_input_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Downsampled tensor with reduced number of feature maps
        """
        return self.transition(x)

class Model(nn.Module):
    def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
        """
        :param growth_rate: The growth rate of the DenseNet (new features added per layer)
        :param num_classes: The number of output classes for classification
        """
        super(Model, self).__init__()

        # Initial convolution and pooling
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        # Each dense block is followed by a transition layer, except the last one
        num_features = 64
        block_layers = [6, 12, 48, 32]  # Corresponding layers in DenseNet201

        self.dense_blocks = nn.ModuleList()
        self.transition_layers = nn.ModuleList()

        for i, num_layers in enumerate(block_layers):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
            self.dense_blocks.append(block)
            num_features = num_features + num_layers * growth_rate

            if i != len(block_layers) - 1:
                transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
                self.transition_layers.append(transition)
                num_features = num_features // 2

        # Final batch norm and classifier
        self.final_bn = nn.BatchNorm2d(num_features)
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        :param x: Input tensor of shape (batch_size, 3, height, width)
        :return: Output tensor of shape (batch_size, num_classes)
        """
        x = self.features(x)

        for i, block in enumerate(self.dense_blocks):
            x = block(x)
            if i != len(self.dense_blocks) - 1:
                x = self.transition_layers[i](x)

        x = self.final_bn(x)
        x = F.relu(x, inplace=True)
        x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Testing the DenseNet201 model
batch_size = 10
num_classes = 10
height, width = 224, 224  # Standard input size for DenseNet

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [32, num_classes]

Kernel Information

Related Kernels (Level 3, Task 16 • 16_DenseNet201)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_optimized_densenet_op_base 8.04 1.01 1.03
🥈 optimized_densenet_cuda_edit_1 8.04 1.01 1.03
🥉 shared_memory_densenet_op_edit_1 8.04 1.01 1.03
4 constant_mem_densenet_edit_1_base 8.06 1.01 1.03
5 coalesced_densenet_bn_base 8.06 1.01 1.03
6 warp_broadcast_densenet_optimized_base 8.09 1.01 1.03
7 warp_uniform_edit_1 8.09 1.01 1.03
8 warp_uniform_base 8.09 1.01 1.03
9 coalesced_densenet_bn_edit_1 8.09 1.01 1.03
10 thread_synchronization_densenet_base 8.10 1.01 1.03
11 16_DenseNet201 8.10 1.01 1.03
12 configurable_blocksize_densenet_base 8.11 1.00 1.03
13 constant_mem_densenet_edit_1_edit_1 8.11 1.00 1.02
14 fuse_bn_relu_opt_base 8.12 1.00 1.02
15 fuse_bn_relu_opt_edit_1 8.13 1.00 1.02
16 stride_loop_densenet_edit_1 8.13 1.00 1.02
17 configurable_blocksize_densenet_edit_1 8.14 1.00 1.02
18 warp_reduction_densenet_base_edit_1 8.14 1.00 1.02
19 shared_memory_densenet_op_base 8.14 1.00 1.02
20 stride_loop_densenet_base 8.15 1.00 1.02
#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <vector>
#include <functional>
#include <cuda_runtime.h>
#include <cmath>

namespace py = pybind11;

// Fused BatchNorm + ReLU CUDA kernel for inference mode
__global__ void fused_bn_relu_kernel(const float* __restrict__ input,
                                       float* __restrict__ output,
                                       const float* __restrict__ bn_weight,
                                       const float* __restrict__ bn_bias,
                                       const float* __restrict__ bn_mean,
                                       const float* __restrict__ bn_var,
                                       float eps,
                                       int n, int c, int h, int w) {
  int total = n * c * h * w;
  int stride = blockDim.x * gridDim.x;
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < total; index += stride) {
    int hw = h * w;
    int channel = (index / hw) % c;
    float val = input[index];
    float norm = (val - bn_mean[channel]) / sqrtf(bn_var[channel] + eps);
    float bnval = bn_weight[channel] * norm + bn_bias[channel];
    // Fused ReLU activation
    output[index] = bnval > 0.0f ? bnval : 0.0f;
  }
}

// Host function to launch the fused BN+ReLU kernel
torch::Tensor fused_bn_relu(torch::Tensor x,
                              torch::Tensor bn_weight,
                              torch::Tensor bn_bias,
                              torch::Tensor bn_mean,
                              torch::Tensor bn_var,
                              float eps) {
  // Ensure the input tensor is contiguous
  x = x.contiguous();
  auto output = torch::empty_like(x);
  int n = x.size(0);
  int c = x.size(1);
  int h = x.size(2);
  int w = x.size(3);
  int total = n * c * h * w;
  int threads = 256;
  int blocks = (total + threads - 1) / threads;
  fused_bn_relu_kernel<<<blocks, threads>>>(x.data_ptr<float>(), output.data_ptr<float>(),
                                             bn_weight.data_ptr<float>(), bn_bias.data_ptr<float>(),
                                             bn_mean.data_ptr<float>(), bn_var.data_ptr<float>(),
                                             eps, n, c, h, w);
  cudaDeviceSynchronize();
  return output;
}

// Dense layer: applies a BN+ReLU then a convolution and dropout
torch::Tensor dense_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,  // scale (gamma)
    torch::Tensor bn_bias,    // shift (beta)
    torch::Tensor bn_mean,    // running mean
    torch::Tensor bn_var,     // running variance
    torch::Tensor conv_weight,
    bool is_training) {
  if (!is_training) {
    // Use the fused kernel in inference mode
    x = fused_bn_relu(x, bn_weight, bn_bias, bn_mean, bn_var, 1e-5);
  } else {
    x = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
    x = at::relu(x);
  }
  x = at::conv2d(x,
                 conv_weight,
                 c10::nullopt,
                 at::IntArrayRef(std::vector<int64_t>{1, 1}),
                 at::IntArrayRef(std::vector<int64_t>{1, 1}));
  x = at::dropout(x, 0.0, is_training);
  return x;
}

// Dense block: sequentially applies dense layers and concatenates the outputs
torch::Tensor dense_block_fn(torch::Tensor x, py::list layer_params, bool is_training) {
  std::vector<torch::Tensor> features;
  features.push_back(x);
  for (ssize_t i = 0; i < layer_params.size(); i++) {
    auto params_tuple = layer_params[i].cast<py::tuple>();
    if (params_tuple.size() != 5) {
      throw std::runtime_error("Each dense layer parameter set must have 5 elements.");
    }
    torch::Tensor bn_weight   = params_tuple[0].cast<torch::Tensor>();
    torch::Tensor bn_bias     = params_tuple[1].cast<torch::Tensor>();
    torch::Tensor bn_mean     = params_tuple[2].cast<torch::Tensor>();
    torch::Tensor bn_var      = params_tuple[3].cast<torch::Tensor>();
    torch::Tensor conv_weight = params_tuple[4].cast<torch::Tensor>();

    torch::Tensor new_feature = dense_layer_fn(x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training);
    features.push_back(new_feature);
    x = at::cat(features, 1);
  }
  return x;
}

// Transition layer: applies BN+ReLU, convolution and average pooling
torch::Tensor transition_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,  // scale (gamma)
    torch::Tensor bn_bias,    // shift (beta)
    torch::Tensor bn_mean,    // running mean
    torch::Tensor bn_var,     // running variance
    torch::Tensor conv_weight,
    bool is_training) {
  if (!is_training) {
    x = fused_bn_relu(x, bn_weight, bn_bias, bn_mean, bn_var, 1e-5);
  } else {
    x = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
    x = at::relu(x);
  }
  x = at::conv2d(x,
                 conv_weight,
                 c10::nullopt,
                 at::IntArrayRef(std::vector<int64_t>{1, 1}),
                 at::IntArrayRef(std::vector<int64_t>{0, 0}));
  x = at::avg_pool2d(x,
                     at::IntArrayRef(std::vector<int64_t>{2, 2}),
                     at::IntArrayRef(std::vector<int64_t>{2, 2}));
  return x;
}

// Forward function orchestrates the DenseNet201 forward pass
torch::Tensor forward(torch::Tensor x, py::object params_obj, bool is_training) {
  py::dict params = params_obj.cast<py::dict>();

  // Initial convolution and BN+ReLU block
  torch::Tensor features_conv_weight = params["features_conv_weight"].cast<torch::Tensor>();
  torch::Tensor features_bn_mean     = params["features_bn_mean"].cast<torch::Tensor>();
  torch::Tensor features_bn_var      = params["features_bn_var"].cast<torch::Tensor>();
  torch::Tensor features_bn_weight   = params["features_bn_weight"].cast<torch::Tensor>();
  torch::Tensor features_bn_bias     = params["features_bn_bias"].cast<torch::Tensor>();

  x = at::conv2d(x,
                 features_conv_weight,
                 c10::nullopt,
                 at::IntArrayRef(std::vector<int64_t>{2, 2}),
                 at::IntArrayRef(std::vector<int64_t>{3, 3}));
  if (!is_training) {
    x = fused_bn_relu(x, features_bn_weight, features_bn_bias, features_bn_mean, features_bn_var, 1e-5);
  } else {
    x = at::batch_norm(x, features_bn_weight, features_bn_bias, features_bn_mean, features_bn_var, is_training, 0.1, 1e-5, true);
    x = at::relu(x);
  }
  x = at::max_pool2d(x,
                     at::IntArrayRef(std::vector<int64_t>{3, 3}),
                     at::IntArrayRef(std::vector<int64_t>{2, 2}),
                     at::IntArrayRef(std::vector<int64_t>{1, 1}));

  // Dense blocks and transition layers
  py::list dense_blocks = params["dense_blocks"].cast<py::list>();
  py::list transition_layers = params["transition_layers"].cast<py::list>();
  int num_dense_blocks = dense_blocks.size();

  // Precompute transition functions to avoid divergent branching
  std::vector<std::function<torch::Tensor(torch::Tensor, bool)>> transition_funcs;
  transition_funcs.reserve(num_dense_blocks);

  for (int i = 0; i < num_dense_blocks; i++) {
    if (i < num_dense_blocks - 1) {
      auto trans_tuple = transition_layers[i].cast<py::tuple>();
      if (trans_tuple.size() != 5) {
        throw std::runtime_error("Each transition layer parameter set must have 5 elements.");
      }
      torch::Tensor t_bn_weight   = trans_tuple[0].cast<torch::Tensor>();
      torch::Tensor t_bn_bias     = trans_tuple[1].cast<torch::Tensor>();
      torch::Tensor t_bn_mean     = trans_tuple[2].cast<torch::Tensor>();
      torch::Tensor t_bn_var      = trans_tuple[3].cast<torch::Tensor>();
      torch::Tensor t_conv_weight = trans_tuple[4].cast<torch::Tensor>();
      transition_funcs.push_back([
          t_bn_weight, t_bn_bias, t_bn_mean, t_bn_var, t_conv_weight
      ](torch::Tensor inp, bool is_train) -> torch::Tensor {
        return transition_layer_fn(inp, t_bn_weight, t_bn_bias, t_bn_mean, t_bn_var, t_conv_weight, is_train);
      });
    } else {
      // Identity function for the final dense block
      transition_funcs.push_back([](torch::Tensor inp, bool) -> torch::Tensor {
        return inp;
      });
    }
  }

  // Process each dense block and apply the corresponding transition uniformly
  for (int i = 0; i < num_dense_blocks; i++) {
    py::list block_params = dense_blocks[i].cast<py::list>();
    x = dense_block_fn(x, block_params, is_training);
    x = transition_funcs[i](x, is_training);
  }

  // Final classifier block with fused BN+ReLU
  torch::Tensor final_bn_mean   = params["final_bn_mean"].cast<torch::Tensor>();
  torch::Tensor final_bn_var    = params["final_bn_var"].cast<torch::Tensor>();
  torch::Tensor final_bn_weight = params["final_bn_weight"].cast<torch::Tensor>();
  torch::Tensor final_bn_bias   = params["final_bn_bias"].cast<torch::Tensor>();

  if (!is_training) {
    x = fused_bn_relu(x, final_bn_weight, final_bn_bias, final_bn_mean, final_bn_var, 1e-5);
  } else {
    x = at::batch_norm(x, final_bn_weight, final_bn_bias, final_bn_mean, final_bn_var, is_training, 0.1, 1e-5, true);
    x = at::relu(x);
  }
  x = at::adaptive_avg_pool2d(x, at::IntArrayRef(std::vector<int64_t>{1, 1}));
  x = x.view({x.size(0), -1});

  torch::Tensor classifier_weight = params["classifier_weight"].cast<torch::Tensor>();
  torch::Tensor classifier_bias   = params["classifier_bias"].cast<torch::Tensor>();
  x = at::linear(x, classifier_weight, classifier_bias);

  return x;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &forward, "Custom CUDA forward function with fused BN and ReLU for reduced warp divergence");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 3778946.68 μs
Device Time 3553785.81 μs
Self CPU Time 157241.89 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3621704.79 μs
Device Time 3553785.81 μs
Self CPU Time 178641.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3443062.96 μs
Device Time 3553785.81 μs
Self CPU Time 215029.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 3228033.17 μs
Device Time 3553785.81 μs
Self CPU Time 1588469.00 μs
Self Device Time 3553785.81 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 3369741.17 μs
Device Time 1751852.51 μs
Self CPU Time 173409.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_tf32f32_tf32f32_f32_nhwckrsc_nchw_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x8_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1820285.72 μs
Self CPU Time 0.00 μs
Self Device Time 1820285.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:15:40 bugprone-easily-swappable-parameters
15 | const float* __restrict__ bn_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const float* __restrict__ bn_mean,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:15:66: note: the first parameter in the range is 'bn_bias'
15 | const float* __restrict__ bn_bias,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:16:66: note: the last parameter in the range is 'bn_mean'
16 | const float* __restrict__ bn_mean,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:18:40: warning: 2 adjacent parameters of 'fused_bn_relu_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | float eps,
| ^~~~~~~~~~
19 | int n, int c, int h, int w) {
| ~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:18:46: note: the first parameter in the range is 'eps'
18 | float eps,
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:19:44: note: the last parameter in the range is 'n'
19 | int n, int c, int h, int w) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:19:40: note: 'float' and 'int' may be implicitly converted
19 | int n, int c, int h, int w) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:21:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
21 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:22:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < total; index += stride) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:35:45: warning: the parameter 'bn_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
35 | torch::Tensor bn_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:36:45: warning: the parameter 'bn_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
36 | torch::Tensor bn_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:37:45: warning: the parameter 'bn_mean' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
37 | torch::Tensor bn_mean,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:38:45: warning: the parameter 'bn_var' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
38 | torch::Tensor bn_var,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:43:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | int n = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:44:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | int c = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:45:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | int h = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:46:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | int w = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:64:5: warning: 2 adjacent parameters of 'dense_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
64 | torch::Tensor bn_var, // running variance
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:64:19: note: the first parameter in the range is 'bn_var'
64 | torch::Tensor bn_var, // running variance
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:65:19: note: the last parameter in the range is 'conv_weight'
65 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:65:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
65 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:84:56: warning: the parameter 'layer_params' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
84 | torch::Tensor dense_block_fn(torch::Tensor x, py::list layer_params, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:111:5: warning: 2 adjacent parameters of 'transition_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
111 | torch::Tensor bn_var, // running variance
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
112 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:111:19: note: the first parameter in the range is 'bn_var'
111 | torch::Tensor bn_var, // running variance
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:112:19: note: the last parameter in the range is 'conv_weight'
112 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:112:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
112 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:132:51: warning: the parameter 'params_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
132 | torch::Tensor forward(torch::Tensor x, py::object params_obj, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:161:26: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
161 | int num_dense_blocks = dense_blocks.size();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_16/b3_s2_fuse_bn_relu_opt/edit_1/edit_1.cu:180:23: warning: the parameter 'inp' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
180 | ](torch::Tensor inp, bool is_train) -> torch::Tensor {
| ^
| const &