← Back to Leaderboard

The AI CUDA Engineer 👷

16_DenseNet201configurable_blocksize_densenet_base

Level 3 • Task 16
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x, params, is_training):
    """
    Functional version of Model forward pass
    """
    x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["features_bn_mean"],
        params["features_bn_var"],
        params["features_bn_weight"],
        params["features_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def dense_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of a single dense layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None, padding=1)
        x = F.dropout(x, p=0.0, training=is_training)
        return x

    def dense_block_fn(x, layer_params, is_training):
        """
        Functional version of DenseBlock
        """
        features = [x]
        for params in layer_params:
            new_feature = dense_layer_fn(x, *params, is_training)
            features.append(new_feature)
            x = torch.cat(features, 1)
        return x

    def transition_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of TransitionLayer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None)  # Removed kernel_size parameter
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        return x

    # Dense blocks and transitions
    for i in range(len(params["dense_blocks"])):
        x = dense_block_fn(x, params["dense_blocks"][i], is_training)
        if i != len(params["dense_blocks"]) - 1:
            x = transition_layer_fn(x, *params["transition_layers"][i], is_training)

    x = F.batch_norm(
        x,
        params["final_bn_mean"],
        params["final_bn_var"],
        params["final_bn_weight"],
        params["final_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
    x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
    return x


class Model(nn.Module):
    def __init__(self, growth_rate=32, num_classes=1000):
        super(Model, self).__init__()

        self.params = nn.ParameterDict()
        num_features = 64
        block_layers = [6, 12, 48, 32]
        device = "cuda"

        # Extract initial features parameters
        conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        bn = nn.BatchNorm2d(64)
        self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone()).to(
            device
        )
        self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(
            device
        )
        self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        # Extract dense blocks parameters
        self.params["dense_blocks"] = []
        for num_layers in block_layers:
            block_params = []
            for i in range(num_layers):
                in_features = num_features + i * growth_rate
                bn = nn.BatchNorm2d(in_features)
                conv = nn.Conv2d(
                    in_features, growth_rate, kernel_size=3, padding=1, bias=False
                )
                layer_params = [
                    nn.Parameter(bn.weight.data.clone()).to(device),
                    nn.Parameter(bn.bias.data.clone()).to(device),
                    nn.Parameter(bn.running_mean.data.clone()).to(device),
                    nn.Parameter(bn.running_var.data.clone()).to(device),
                    nn.Parameter(conv.weight.data.clone()).to(device),
                ]
                block_params.append(layer_params)
            self.params["dense_blocks"].append(block_params)
            num_features = num_features + num_layers * growth_rate

            # Extract transition layer parameters if not last block
            if len(self.params.get("transition_layers", [])) < len(block_layers) - 1:
                bn = nn.BatchNorm2d(num_features)
                conv = nn.Conv2d(
                    num_features, num_features // 2, kernel_size=1, bias=False
                )
                if "transition_layers" not in self.params:
                    self.params["transition_layers"] = []
                self.params["transition_layers"].append(
                    [
                        nn.Parameter(bn.weight.data.clone()).to(device),
                        nn.Parameter(bn.bias.data.clone()).to(device),
                        nn.Parameter(bn.running_mean.data.clone()).to(device),
                        nn.Parameter(bn.running_var.data.clone()).to(device),
                        nn.Parameter(conv.weight.data.clone()).to(device),
                    ]
                )
                num_features = num_features // 2

        # Extract final layers parameters
        bn = nn.BatchNorm2d(num_features)
        self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(device)
        self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        linear = nn.Linear(num_features, num_classes)
        self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone()).to(
            device
        )
        self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone()).to(
            device
        )

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


batch_size = 10
num_classes = 10
height, width = 224, 224


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
        """
        :param num_layers: The number of layers in the dense block
        :param num_input_features: The number of input feature maps
        :param growth_rate: The growth rate for the dense block (new features added per layer)
        """
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
        self.layers = nn.ModuleList(layers)

    def _make_layer(self, in_features: int, growth_rate: int):
        """
        Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
        """
        return nn.Sequential(
            nn.BatchNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
            nn.Dropout(0.0)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
        """
        features = [x]
        for layer in self.layers:
            new_feature = layer(x)
            features.append(new_feature)
            x = torch.cat(features, 1)  # Concatenate along channel axis
        return x

class TransitionLayer(nn.Module):
    def __init__(self, num_input_features: int, num_output_features: int):
        """
        :param num_input_features: The number of input feature maps
        :param num_output_features: The number of output feature maps
        """
        super(TransitionLayer, self).__init__()
        self.transition = nn.Sequential(
            nn.BatchNorm2d(num_input_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Downsampled tensor with reduced number of feature maps
        """
        return self.transition(x)

class Model(nn.Module):
    def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
        """
        :param growth_rate: The growth rate of the DenseNet (new features added per layer)
        :param num_classes: The number of output classes for classification
        """
        super(Model, self).__init__()

        # Initial convolution and pooling
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        # Each dense block is followed by a transition layer, except the last one
        num_features = 64
        block_layers = [6, 12, 48, 32]  # Corresponding layers in DenseNet201

        self.dense_blocks = nn.ModuleList()
        self.transition_layers = nn.ModuleList()

        for i, num_layers in enumerate(block_layers):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
            self.dense_blocks.append(block)
            num_features = num_features + num_layers * growth_rate

            if i != len(block_layers) - 1:
                transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
                self.transition_layers.append(transition)
                num_features = num_features // 2

        # Final batch norm and classifier
        self.final_bn = nn.BatchNorm2d(num_features)
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        :param x: Input tensor of shape (batch_size, 3, height, width)
        :return: Output tensor of shape (batch_size, num_classes)
        """
        x = self.features(x)

        for i, block in enumerate(self.dense_blocks):
            x = block(x)
            if i != len(self.dense_blocks) - 1:
                x = self.transition_layers[i](x)

        x = self.final_bn(x)
        x = F.relu(x, inplace=True)
        x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Testing the DenseNet201 model
batch_size = 10
num_classes = 10
height, width = 224, 224  # Standard input size for DenseNet

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [32, num_classes]

Kernel Information

Related Kernels (Level 3, Task 16 • 16_DenseNet201)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_optimized_densenet_op_base 8.04 1.01 1.03
🥈 optimized_densenet_cuda_edit_1 8.04 1.01 1.03
🥉 shared_memory_densenet_op_edit_1 8.04 1.01 1.03
4 constant_mem_densenet_edit_1_base 8.06 1.01 1.03
5 coalesced_densenet_bn_base 8.06 1.01 1.03
6 warp_broadcast_densenet_optimized_base 8.09 1.01 1.03
7 warp_uniform_edit_1 8.09 1.01 1.03
8 warp_uniform_base 8.09 1.01 1.03
9 coalesced_densenet_bn_edit_1 8.09 1.01 1.03
10 thread_synchronization_densenet_base 8.10 1.01 1.03
11 16_DenseNet201 8.10 1.01 1.03
12 configurable_blocksize_densenet_base 8.11 1.00 1.03
13 constant_mem_densenet_edit_1_edit_1 8.11 1.00 1.02
14 fuse_bn_relu_opt_base 8.12 1.00 1.02
15 fuse_bn_relu_opt_edit_1 8.13 1.00 1.02
16 stride_loop_densenet_edit_1 8.13 1.00 1.02
17 configurable_blocksize_densenet_edit_1 8.14 1.00 1.02
18 warp_reduction_densenet_base_edit_1 8.14 1.00 1.02
19 shared_memory_densenet_op_base 8.14 1.00 1.02
20 stride_loop_densenet_base 8.15 1.00 1.02
#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <vector>
#include <cuda_runtime.h>

// Dynamic batch norm kernel using grid-stride loop
__global__ void batch_norm_dynamic_kernel(
    float* __restrict__ output,
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    const float* __restrict__ mean,
    const float* __restrict__ var,
    int N, int C, int H, int W) {
  int total = N * C * H * W;
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = idx; i < total; i += stride) {
    int c = (i / (H * W)) % C;
    float norm = (input[i] - mean[c]) * rsqrtf(var[c] + 1e-5f);
    output[i] = weight[c] * norm + bias[c];
  }
}

// Helper function to launch the dynamic batch norm kernel with configurable block size
inline void launch_batch_norm(
    float* output,
    const float* input,
    const float* weight,
    const float* bias,
    const float* mean,
    const float* var,
    int N, int C, int H, int W) {
  int total = N * C * H * W;
  int block_size;
  // Choose block size based on total work
  if (total < 1000000) {
    block_size = 128;
  } else if (total < 10000000) {
    block_size = 256;
  } else {
    block_size = 512;
  }
  int grid_size = (total + block_size - 1) / block_size;
  batch_norm_dynamic_kernel<<<grid_size, block_size>>>(output, input, weight, bias, mean, var, N, C, H, W);
}

// Dense layer function applying batch norm, relu, conv, and dropout
torch::Tensor dense_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,  // scale (gamma)
    torch::Tensor bn_bias,    // shift (beta)
    torch::Tensor bn_mean,    // running mean
    torch::Tensor bn_var,     // running variance
    torch::Tensor conv_weight,
    bool is_training) {
  auto sizes = x.sizes();
  int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];

  auto output = torch::empty_like(x);
  if (!is_training) {
    launch_batch_norm(
        output.data_ptr<float>(),
        x.data_ptr<float>(),
        bn_weight.data_ptr<float>(),
        bn_bias.data_ptr<float>(),
        bn_mean.data_ptr<float>(),
        bn_var.data_ptr<float>(),
        N, C, H, W);
  } else {
    output = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
  }
  
  output = at::relu(output);
  output = at::conv2d(output,
                      conv_weight,
                      c10::nullopt,
                      at::IntArrayRef(std::vector<int64_t>{1, 1}),
                      at::IntArrayRef(std::vector<int64_t>{1, 1}));
  output = at::dropout(output, 0.0, is_training);
  return output;
}

// Dense block function. Each element in layer_params is a tuple of 5 tensors for the dense layer
torch::Tensor dense_block_fn(torch::Tensor x, pybind11::list layer_params, bool is_training) {
  std::vector<torch::Tensor> features;
  features.push_back(x);
  for (ssize_t i = 0; i < layer_params.size(); i++) {
    auto params_tuple = layer_params[i].cast<pybind11::tuple>();
    if (params_tuple.size() != 5) {
      throw std::runtime_error("Each dense layer parameter set must have 5 elements.");
    }
    torch::Tensor bn_weight   = params_tuple[0].cast<torch::Tensor>();
    torch::Tensor bn_bias     = params_tuple[1].cast<torch::Tensor>();
    torch::Tensor bn_mean     = params_tuple[2].cast<torch::Tensor>();
    torch::Tensor bn_var      = params_tuple[3].cast<torch::Tensor>();
    torch::Tensor conv_weight = params_tuple[4].cast<torch::Tensor>();
    
    torch::Tensor new_feature = dense_layer_fn(x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training);
    features.push_back(new_feature);
    x = at::cat(features, 1);
  }
  return x;
}

// Transition layer: batch norm, relu, conv and average pooling
torch::Tensor transition_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,  // scale (gamma)
    torch::Tensor bn_bias,    // shift (beta)
    torch::Tensor bn_mean,    // running mean
    torch::Tensor bn_var,     // running variance
    torch::Tensor conv_weight,
    bool is_training) {
  auto sizes = x.sizes();
  int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
  auto output = torch::empty_like(x);
  
  if (!is_training) {
    launch_batch_norm(
        output.data_ptr<float>(),
        x.data_ptr<float>(),
        bn_weight.data_ptr<float>(),
        bn_bias.data_ptr<float>(),
        bn_mean.data_ptr<float>(),
        bn_var.data_ptr<float>(),
        N, C, H, W);
  } else {
    output = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
  }
  
  output = at::relu(output);
  output = at::conv2d(output,
                      conv_weight,
                      c10::nullopt,
                      at::IntArrayRef(std::vector<int64_t>{1, 1}),
                      at::IntArrayRef(std::vector<int64_t>{0, 0}));
  output = at::avg_pool2d(output,
                          at::IntArrayRef(std::vector<int64_t>{2, 2}),
                          at::IntArrayRef(std::vector<int64_t>{2, 2}));
  return output;
}

// Forward function implementing the DenseNet201 computation using dynamic block size for batch norm
torch::Tensor forward(torch::Tensor x, pybind11::object params_obj, bool is_training) {
  pybind11::dict params = params_obj.cast<pybind11::dict>();

  // Initial convolution and batch norm block
  torch::Tensor features_conv_weight = params["features_conv_weight"].cast<torch::Tensor>();
  torch::Tensor features_bn_mean     = params["features_bn_mean"].cast<torch::Tensor>();
  torch::Tensor features_bn_var      = params["features_bn_var"].cast<torch::Tensor>();
  torch::Tensor features_bn_weight   = params["features_bn_weight"].cast<torch::Tensor>();
  torch::Tensor features_bn_bias     = params["features_bn_bias"].cast<torch::Tensor>();

  x = at::conv2d(x,
                 features_conv_weight,
                 c10::nullopt,
                 at::IntArrayRef(std::vector<int64_t>{2, 2}),
                 at::IntArrayRef(std::vector<int64_t>{3, 3}));

  auto sizes = x.sizes();
  int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];

  auto output = torch::empty_like(x);
  if (!is_training) {
    launch_batch_norm(
        output.data_ptr<float>(),
        x.data_ptr<float>(),
        features_bn_weight.data_ptr<float>(),
        features_bn_bias.data_ptr<float>(),
        features_bn_mean.data_ptr<float>(),
        features_bn_var.data_ptr<float>(),
        N, C, H, W);
    x = output;
  } else {
    x = at::batch_norm(x, features_bn_weight, features_bn_bias, features_bn_mean, features_bn_var, is_training, 0.1, 1e-5, true);
  }

  x = at::relu(x);
  x = at::max_pool2d(x,
                     at::IntArrayRef(std::vector<int64_t>{3, 3}),
                     at::IntArrayRef(std::vector<int64_t>{2, 2}),
                     at::IntArrayRef(std::vector<int64_t>{1, 1}));

  // Dense blocks and transition layers
  pybind11::list dense_blocks = params["dense_blocks"].cast<pybind11::list>();
  pybind11::list transition_layers = params["transition_layers"].cast<pybind11::list>();

  int num_dense_blocks = dense_blocks.size();
  for (int i = 0; i < num_dense_blocks; i++) {
    pybind11::list block_params = dense_blocks[i].cast<pybind11::list>();
    x = dense_block_fn(x, block_params, is_training);
    
    if (i != num_dense_blocks - 1) {
      auto trans_tuple = transition_layers[i].cast<pybind11::tuple>();
      if (trans_tuple.size() != 5) {
        throw std::runtime_error("Each transition layer parameter set must have 5 elements.");
      }
      torch::Tensor t_bn_weight = trans_tuple[0].cast<torch::Tensor>();
      torch::Tensor t_bn_bias   = trans_tuple[1].cast<torch::Tensor>();
      torch::Tensor t_bn_mean   = trans_tuple[2].cast<torch::Tensor>();
      torch::Tensor t_bn_var    = trans_tuple[3].cast<torch::Tensor>();
      torch::Tensor t_conv_weight = trans_tuple[4].cast<torch::Tensor>();
      
      x = transition_layer_fn(x, t_bn_weight, t_bn_bias, t_bn_mean, t_bn_var, t_conv_weight, is_training);
    }
  }

  // Final classifier block
  torch::Tensor final_bn_mean   = params["final_bn_mean"].cast<torch::Tensor>();
  torch::Tensor final_bn_var    = params["final_bn_var"].cast<torch::Tensor>();
  torch::Tensor final_bn_weight = params["final_bn_weight"].cast<torch::Tensor>();
  torch::Tensor final_bn_bias   = params["final_bn_bias"].cast<torch::Tensor>();

  sizes = x.sizes();
  N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
  output = torch::empty_like(x);
  if (!is_training) {
    launch_batch_norm(
        output.data_ptr<float>(),
        x.data_ptr<float>(),
        final_bn_weight.data_ptr<float>(),
        final_bn_bias.data_ptr<float>(),
        final_bn_mean.data_ptr<float>(),
        final_bn_var.data_ptr<float>(),
        N, C, H, W);
    x = output;
  } else {
    x = at::batch_norm(x, final_bn_weight, final_bn_bias,
                      final_bn_mean, final_bn_var,
                      is_training, 0.1, 1e-5, true);
  }

  x = at::relu(x);
  x = at::adaptive_avg_pool2d(x, at::IntArrayRef(std::vector<int64_t>{1, 1}));
  x = x.view({x.size(0), -1});

  torch::Tensor classifier_weight = params["classifier_weight"].cast<torch::Tensor>();
  torch::Tensor classifier_bias   = params["classifier_bias"].cast<torch::Tensor>();
  x = at::linear(x, classifier_weight, classifier_bias);
  
  return x;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &forward, "Custom CUDA forward function with configurable block sizes for batch normalization");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 3495013.14 μs
Device Time 3282798.46 μs
Self CPU Time 143235.05 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3351778.08 μs
Device Time 3282798.46 μs
Self CPU Time 162620.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3189157.21 μs
Device Time 3282798.46 μs
Self CPU Time 203675.78 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 2985481.43 μs
Device Time 3282798.46 μs
Self CPU Time 1514155.60 μs
Self Device Time 3282798.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 3139039.50 μs
Device Time 1620020.49 μs
Self CPU Time 153981.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_tf32f32_tf32f32_f32_nhwckrsc_nchw_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x8_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1686107.52 μs
Self CPU Time 0.00 μs
Self Device Time 1686107.52 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45304 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:10:5 bugprone-easily-swappable-parameters
10 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:10:31: note: the first parameter in the range is 'input'
10 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:11:31: note: the last parameter in the range is 'weight'
11 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:12:5: warning: 2 adjacent parameters of 'batch_norm_dynamic_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | const float* __restrict__ bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 | const float* __restrict__ mean,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:12:31: note: the first parameter in the range is 'bias'
12 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:13:31: note: the last parameter in the range is 'mean'
13 | const float* __restrict__ mean,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:17:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:18:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:51:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
51 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:55:5: warning: 2 adjacent parameters of 'dense_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
55 | torch::Tensor bn_var, // running variance
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:55:19: note: the first parameter in the range is 'bn_var'
55 | torch::Tensor bn_var, // running variance
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:56:19: note: the last parameter in the range is 'conv_weight'
56 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:56:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
56 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:59:11: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:59:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:59:39: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:59:53: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:86:62: warning: the parameter 'layer_params' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
86 | torch::Tensor dense_block_fn(torch::Tensor x, pybind11::list layer_params, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:109:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
109 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:113:5: warning: 2 adjacent parameters of 'transition_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
113 | torch::Tensor bn_var, // running variance
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:113:19: note: the first parameter in the range is 'bn_var'
113 | torch::Tensor bn_var, // running variance
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:114:19: note: the last parameter in the range is 'conv_weight'
114 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:114:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
114 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:117:11: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:117:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:117:39: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:117:53: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:146:57: warning: the parameter 'params_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
146 | torch::Tensor forward(torch::Tensor x, pybind11::object params_obj, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:163:11: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:163:25: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:163:39: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:163:53: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
163 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:190:26: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
190 | int num_dense_blocks = dense_blocks.size();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:217:7: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
217 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:217:21: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
217 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:217:35: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
217 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s1_configurable_blocksize_densenet/base/base.cu:217:49: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
217 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^