← Back to Leaderboard

The AI CUDA Engineer 👷

16_DenseNet201warp_optimized_densenet_op_base

Level 3 • Task 16
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x, params, is_training):
    """
    Functional version of Model forward pass
    """
    x = F.conv2d(x, params["features_conv_weight"], bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["features_bn_mean"],
        params["features_bn_var"],
        params["features_bn_weight"],
        params["features_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def dense_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of a single dense layer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None, padding=1)
        x = F.dropout(x, p=0.0, training=is_training)
        return x

    def dense_block_fn(x, layer_params, is_training):
        """
        Functional version of DenseBlock
        """
        features = [x]
        for params in layer_params:
            new_feature = dense_layer_fn(x, *params, is_training)
            features.append(new_feature)
            x = torch.cat(features, 1)
        return x

    def transition_layer_fn(
        x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training
    ):
        """
        Functional version of TransitionLayer
        """
        x = F.batch_norm(x, bn_mean, bn_var, bn_weight, bn_bias, training=is_training)
        x = F.relu(x, inplace=True)
        x = F.conv2d(x, conv_weight, bias=None)  # Removed kernel_size parameter
        x = F.avg_pool2d(x, kernel_size=2, stride=2)
        return x

    # Dense blocks and transitions
    for i in range(len(params["dense_blocks"])):
        x = dense_block_fn(x, params["dense_blocks"][i], is_training)
        if i != len(params["dense_blocks"]) - 1:
            x = transition_layer_fn(x, *params["transition_layers"][i], is_training)

    x = F.batch_norm(
        x,
        params["final_bn_mean"],
        params["final_bn_var"],
        params["final_bn_weight"],
        params["final_bn_bias"],
        training=is_training,
    )
    x = F.relu(x, inplace=True)
    x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
    x = F.linear(x, params["classifier_weight"], params["classifier_bias"])
    return x


class Model(nn.Module):
    def __init__(self, growth_rate=32, num_classes=1000):
        super(Model, self).__init__()

        self.params = nn.ParameterDict()
        num_features = 64
        block_layers = [6, 12, 48, 32]
        device = "cuda"

        # Extract initial features parameters
        conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        bn = nn.BatchNorm2d(64)
        self.params["features_conv_weight"] = nn.Parameter(conv.weight.data.clone()).to(
            device
        )
        self.params["features_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(
            device
        )
        self.params["features_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["features_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["features_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        # Extract dense blocks parameters
        self.params["dense_blocks"] = []
        for num_layers in block_layers:
            block_params = []
            for i in range(num_layers):
                in_features = num_features + i * growth_rate
                bn = nn.BatchNorm2d(in_features)
                conv = nn.Conv2d(
                    in_features, growth_rate, kernel_size=3, padding=1, bias=False
                )
                layer_params = [
                    nn.Parameter(bn.weight.data.clone()).to(device),
                    nn.Parameter(bn.bias.data.clone()).to(device),
                    nn.Parameter(bn.running_mean.data.clone()).to(device),
                    nn.Parameter(bn.running_var.data.clone()).to(device),
                    nn.Parameter(conv.weight.data.clone()).to(device),
                ]
                block_params.append(layer_params)
            self.params["dense_blocks"].append(block_params)
            num_features = num_features + num_layers * growth_rate

            # Extract transition layer parameters if not last block
            if len(self.params.get("transition_layers", [])) < len(block_layers) - 1:
                bn = nn.BatchNorm2d(num_features)
                conv = nn.Conv2d(
                    num_features, num_features // 2, kernel_size=1, bias=False
                )
                if "transition_layers" not in self.params:
                    self.params["transition_layers"] = []
                self.params["transition_layers"].append(
                    [
                        nn.Parameter(bn.weight.data.clone()).to(device),
                        nn.Parameter(bn.bias.data.clone()).to(device),
                        nn.Parameter(bn.running_mean.data.clone()).to(device),
                        nn.Parameter(bn.running_var.data.clone()).to(device),
                        nn.Parameter(conv.weight.data.clone()).to(device),
                    ]
                )
                num_features = num_features // 2

        # Extract final layers parameters
        bn = nn.BatchNorm2d(num_features)
        self.params["final_bn_weight"] = nn.Parameter(bn.weight.data.clone()).to(device)
        self.params["final_bn_bias"] = nn.Parameter(bn.bias.data.clone()).to(device)
        self.params["final_bn_mean"] = nn.Parameter(bn.running_mean.data.clone()).to(
            device
        )
        self.params["final_bn_var"] = nn.Parameter(bn.running_var.data.clone()).to(
            device
        )

        linear = nn.Linear(num_features, num_classes)
        self.params["classifier_weight"] = nn.Parameter(linear.weight.data.clone()).to(
            device
        )
        self.params["classifier_bias"] = nn.Parameter(linear.bias.data.clone()).to(
            device
        )

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


batch_size = 10
num_classes = 10
height, width = 224, 224


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [32, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers: int, num_input_features: int, growth_rate: int):
        """
        :param num_layers: The number of layers in the dense block
        :param num_input_features: The number of input feature maps
        :param growth_rate: The growth rate for the dense block (new features added per layer)
        """
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(self._make_layer(num_input_features + i * growth_rate, growth_rate))
        self.layers = nn.ModuleList(layers)

    def _make_layer(self, in_features: int, growth_rate: int):
        """
        Creates a single layer with BatchNorm, ReLU, Conv2D, and Dropout.
        """
        return nn.Sequential(
            nn.BatchNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_features, growth_rate, kernel_size=3, padding=1, bias=False),
            nn.Dropout(0.0)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Concatenated output tensor with shape (batch_size, num_output_features, height, width)
        """
        features = [x]
        for layer in self.layers:
            new_feature = layer(x)
            features.append(new_feature)
            x = torch.cat(features, 1)  # Concatenate along channel axis
        return x

class TransitionLayer(nn.Module):
    def __init__(self, num_input_features: int, num_output_features: int):
        """
        :param num_input_features: The number of input feature maps
        :param num_output_features: The number of output feature maps
        """
        super(TransitionLayer, self).__init__()
        self.transition = nn.Sequential(
            nn.BatchNorm2d(num_input_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_input_features, num_output_features, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        """
        :param x: Input tensor of shape (batch_size, num_input_features, height, width)
        :return: Downsampled tensor with reduced number of feature maps
        """
        return self.transition(x)

class Model(nn.Module):
    def __init__(self, growth_rate: int = 32, num_classes: int = 1000):
        """
        :param growth_rate: The growth rate of the DenseNet (new features added per layer)
        :param num_classes: The number of output classes for classification
        """
        super(Model, self).__init__()

        # Initial convolution and pooling
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        # Each dense block is followed by a transition layer, except the last one
        num_features = 64
        block_layers = [6, 12, 48, 32]  # Corresponding layers in DenseNet201

        self.dense_blocks = nn.ModuleList()
        self.transition_layers = nn.ModuleList()

        for i, num_layers in enumerate(block_layers):
            block = DenseBlock(num_layers=num_layers, num_input_features=num_features, growth_rate=growth_rate)
            self.dense_blocks.append(block)
            num_features = num_features + num_layers * growth_rate

            if i != len(block_layers) - 1:
                transition = TransitionLayer(num_input_features=num_features, num_output_features=num_features // 2)
                self.transition_layers.append(transition)
                num_features = num_features // 2

        # Final batch norm and classifier
        self.final_bn = nn.BatchNorm2d(num_features)
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        :param x: Input tensor of shape (batch_size, 3, height, width)
        :return: Output tensor of shape (batch_size, num_classes)
        """
        x = self.features(x)

        for i, block in enumerate(self.dense_blocks):
            x = block(x)
            if i != len(self.dense_blocks) - 1:
                x = self.transition_layers[i](x)

        x = self.final_bn(x)
        x = F.relu(x, inplace=True)
        x = F.adaptive_avg_pool2d(x, (1, 1)).view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Testing the DenseNet201 model
batch_size = 10
num_classes = 10
height, width = 224, 224  # Standard input size for DenseNet

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [32, num_classes]

Kernel Information

Related Kernels (Level 3, Task 16 • 16_DenseNet201)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 warp_optimized_densenet_op_base 8.04 1.01 1.03
🥈 optimized_densenet_cuda_edit_1 8.04 1.01 1.03
🥉 shared_memory_densenet_op_edit_1 8.04 1.01 1.03
4 constant_mem_densenet_edit_1_base 8.06 1.01 1.03
5 coalesced_densenet_bn_base 8.06 1.01 1.03
6 warp_broadcast_densenet_optimized_base 8.09 1.01 1.03
7 warp_uniform_edit_1 8.09 1.01 1.03
8 warp_uniform_base 8.09 1.01 1.03
9 coalesced_densenet_bn_edit_1 8.09 1.01 1.03
10 thread_synchronization_densenet_base 8.10 1.01 1.03
11 16_DenseNet201 8.10 1.01 1.03
12 configurable_blocksize_densenet_base 8.11 1.00 1.03
13 constant_mem_densenet_edit_1_edit_1 8.11 1.00 1.02
14 fuse_bn_relu_opt_base 8.12 1.00 1.02
15 fuse_bn_relu_opt_edit_1 8.13 1.00 1.02
16 stride_loop_densenet_edit_1 8.13 1.00 1.02
17 configurable_blocksize_densenet_edit_1 8.14 1.00 1.02
18 warp_reduction_densenet_base_edit_1 8.14 1.00 1.02
19 shared_memory_densenet_op_base 8.14 1.00 1.02
20 stride_loop_densenet_base 8.15 1.00 1.02
#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <vector>
#include <cuda_runtime.h>

#define WARP_SIZE 32
#define FULL_MASK 0xffffffff

__device__ float warp_reduce_sum(float val) {
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(FULL_MASK, val, offset);
    }
    return val;
}

__global__ void batch_norm_warp_kernel(
    float* output, const float* input,
    const float* weight, const float* bias,
    const float* mean, const float* var,
    int N, int C, int H, int W) {

    extern __shared__ float shared_mem[];
    int tid = threadIdx.x;
    int global_tid = blockIdx.x * blockDim.x + tid;
    int stride = blockDim.x * gridDim.x;

    for (int idx = global_tid; idx < N * C * H * W; idx += stride) {
        int c = (idx / (H * W)) % C;
        float inv_var = rsqrtf(var[c] + 1e-5f);

        // Load data into shared memory
        shared_mem[tid] = input[idx];
        __syncthreads();

        // Warp-level reduction for local sum
        float local_sum = shared_mem[tid];
        local_sum = warp_reduce_sum(local_sum);

        // First thread in warp writes result
        if (tid % WARP_SIZE == 0) {
            shared_mem[tid / WARP_SIZE] = local_sum;
        }
        __syncthreads();

        if (tid < WARP_SIZE) {
            local_sum = (tid < blockDim.x / WARP_SIZE) ? shared_mem[tid] : 0.0f;
            local_sum = warp_reduce_sum(local_sum);

            if (tid == 0) {
                shared_mem[0] = local_sum;
            }
        }
        __syncthreads();

        // Normalize using the computed statistics
        float normalized = (input[idx] - mean[c]) * inv_var;
        output[idx] = weight[c] * normalized + bias[c];
    }
}

torch::Tensor dense_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_mean,
    torch::Tensor bn_var,
    torch::Tensor conv_weight,
    bool is_training) {

    auto sizes = x.sizes();
    int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];

    const int threads = 256;
    const int blocks = (N * C * H * W + threads - 1) / threads;
    const int shared_mem_size = threads * sizeof(float);

    auto output = torch::empty_like(x);

    if (!is_training) {
        batch_norm_warp_kernel<<<blocks, threads, shared_mem_size>>>(
            output.data_ptr<float>(),
            x.data_ptr<float>(),
            bn_weight.data_ptr<float>(),
            bn_bias.data_ptr<float>(),
            bn_mean.data_ptr<float>(),
            bn_var.data_ptr<float>(),
            N, C, H, W
        );
    } else {
        output = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
    }

    output = at::relu(output);
    output = at::conv2d(output,
                       conv_weight,
                       c10::nullopt,
                       at::IntArrayRef(std::vector<int64_t>{1, 1}),
                       at::IntArrayRef(std::vector<int64_t>{1, 1}));
    output = at::dropout(output, 0.0, is_training);
    return output;
}

torch::Tensor dense_block_fn(torch::Tensor x, pybind11::list layer_params, bool is_training) {
    std::vector<torch::Tensor> features;
    features.push_back(x);

    for (ssize_t i = 0; i < layer_params.size(); i++) {
        auto params_tuple = layer_params[i].cast<pybind11::tuple>();
        torch::Tensor bn_weight = params_tuple[0].cast<torch::Tensor>();
        torch::Tensor bn_bias = params_tuple[1].cast<torch::Tensor>();
        torch::Tensor bn_mean = params_tuple[2].cast<torch::Tensor>();
        torch::Tensor bn_var = params_tuple[3].cast<torch::Tensor>();
        torch::Tensor conv_weight = params_tuple[4].cast<torch::Tensor>();

        torch::Tensor new_feature = dense_layer_fn(x, bn_weight, bn_bias, bn_mean, bn_var, conv_weight, is_training);
        features.push_back(new_feature);
        x = at::cat(features, 1);
    }
    return x;
}

torch::Tensor transition_layer_fn(
    torch::Tensor x,
    torch::Tensor bn_weight,
    torch::Tensor bn_bias,
    torch::Tensor bn_mean,
    torch::Tensor bn_var,
    torch::Tensor conv_weight,
    bool is_training) {

    auto sizes = x.sizes();
    int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];

    const int threads = 256;
    const int blocks = (N * C * H * W + threads - 1) / threads;
    const int shared_mem_size = threads * sizeof(float);

    auto output = torch::empty_like(x);

    if (!is_training) {
        batch_norm_warp_kernel<<<blocks, threads, shared_mem_size>>>(
            output.data_ptr<float>(),
            x.data_ptr<float>(),
            bn_weight.data_ptr<float>(),
            bn_bias.data_ptr<float>(),
            bn_mean.data_ptr<float>(),
            bn_var.data_ptr<float>(),
            N, C, H, W
        );
    } else {
        output = at::batch_norm(x, bn_weight, bn_bias, bn_mean, bn_var, is_training, 0.1, 1e-5, true);
    }

    output = at::relu(output);
    output = at::conv2d(output,
                     conv_weight,
                     c10::nullopt,
                     at::IntArrayRef(std::vector<int64_t>{1, 1}),
                     at::IntArrayRef(std::vector<int64_t>{0, 0}));
    output = at::avg_pool2d(output,
                         at::IntArrayRef(std::vector<int64_t>{2, 2}),
                         at::IntArrayRef(std::vector<int64_t>{2, 2}));
    return output;
}

torch::Tensor forward(torch::Tensor x, pybind11::object params_obj, bool is_training) {
    pybind11::dict params = params_obj.cast<pybind11::dict>();

    torch::Tensor features_conv_weight = params["features_conv_weight"].cast<torch::Tensor>();
    torch::Tensor features_bn_mean = params["features_bn_mean"].cast<torch::Tensor>();
    torch::Tensor features_bn_var = params["features_bn_var"].cast<torch::Tensor>();
    torch::Tensor features_bn_weight = params["features_bn_weight"].cast<torch::Tensor>();
    torch::Tensor features_bn_bias = params["features_bn_bias"].cast<torch::Tensor>();

    x = at::conv2d(x,
                 features_conv_weight,
                 c10::nullopt,
                 at::IntArrayRef(std::vector<int64_t>{2, 2}),
                 at::IntArrayRef(std::vector<int64_t>{3, 3}));

    auto sizes = x.sizes();
    int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
    const int threads = 256;
    const int blocks = (N * C * H * W + threads - 1) / threads;
    const int shared_mem_size = threads * sizeof(float);

    auto output = torch::empty_like(x);
    if (!is_training) {
        batch_norm_warp_kernel<<<blocks, threads, shared_mem_size>>>(
            output.data_ptr<float>(),
            x.data_ptr<float>(),
            features_bn_weight.data_ptr<float>(),
            features_bn_bias.data_ptr<float>(),
            features_bn_mean.data_ptr<float>(),
            features_bn_var.data_ptr<float>(),
            N, C, H, W
        );
        x = output;
    } else {
        x = at::batch_norm(x, features_bn_weight, features_bn_bias, 
                          features_bn_mean, features_bn_var, 
                          is_training, 0.1, 1e-5, true);
    }

    x = at::relu(x);
    x = at::max_pool2d(x,
                     at::IntArrayRef(std::vector<int64_t>{3, 3}),
                     at::IntArrayRef(std::vector<int64_t>{2, 2}),
                     at::IntArrayRef(std::vector<int64_t>{1, 1}));

    pybind11::list dense_blocks = params["dense_blocks"].cast<pybind11::list>();
    pybind11::list transition_layers = params["transition_layers"].cast<pybind11::list>();

    int num_dense_blocks = dense_blocks.size();
    for (int i = 0; i < num_dense_blocks; i++) {
        pybind11::list block_params = dense_blocks[i].cast<pybind11::list>();
        x = dense_block_fn(x, block_params, is_training);

        if (i != num_dense_blocks - 1) {
            auto trans_tuple = transition_layers[i].cast<pybind11::tuple>();
            torch::Tensor t_bn_weight = trans_tuple[0].cast<torch::Tensor>();
            torch::Tensor t_bn_bias = trans_tuple[1].cast<torch::Tensor>();
            torch::Tensor t_bn_mean = trans_tuple[2].cast<torch::Tensor>();
            torch::Tensor t_bn_var = trans_tuple[3].cast<torch::Tensor>();
            torch::Tensor t_conv_weight = trans_tuple[4].cast<torch::Tensor>();

            x = transition_layer_fn(x, t_bn_weight, t_bn_bias, t_bn_mean, 
                                  t_bn_var, t_conv_weight, is_training);
        }
    }

    torch::Tensor final_bn_mean = params["final_bn_mean"].cast<torch::Tensor>();
    torch::Tensor final_bn_var = params["final_bn_var"].cast<torch::Tensor>();
    torch::Tensor final_bn_weight = params["final_bn_weight"].cast<torch::Tensor>();
    torch::Tensor final_bn_bias = params["final_bn_bias"].cast<torch::Tensor>();

    sizes = x.sizes();
    N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
    output = torch::empty_like(x);

    if (!is_training) {
        batch_norm_warp_kernel<<<blocks, threads, shared_mem_size>>>(
            output.data_ptr<float>(),
            x.data_ptr<float>(),
            final_bn_weight.data_ptr<float>(),
            final_bn_bias.data_ptr<float>(),
            final_bn_mean.data_ptr<float>(),
            final_bn_var.data_ptr<float>(),
            N, C, H, W
        );
        x = output;
    } else {
        x = at::batch_norm(x, final_bn_weight, final_bn_bias,
                          final_bn_mean, final_bn_var,
                          is_training, 0.1, 1e-5, true);
    }

    x = at::relu(x);
    x = at::adaptive_avg_pool2d(x, at::IntArrayRef(std::vector<int64_t>{1, 1}));
    x = x.view({x.size(0), -1});

    torch::Tensor classifier_weight = params["classifier_weight"].cast<torch::Tensor>();
    torch::Tensor classifier_bias = params["classifier_bias"].cast<torch::Tensor>();
    x = at::linear(x, classifier_weight, classifier_bias);

    return x;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Custom CUDA forward function");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 3629232.47 μs
Device Time 3392521.10 μs
Self CPU Time 156834.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 3472397.99 μs
Device Time 3392521.10 μs
Self CPU Time 171686.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 3300711.23 μs
Device Time 3392521.10 μs
Self CPU Time 213807.74 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 3086903.49 μs
Device Time 3392521.10 μs
Self CPU Time 1571740.63 μs
Self Device Time 3392521.10 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::batch_norm
CPU Time 3217746.13 μs
Device Time 1675286.55 μs
Self CPU Time 162994.06 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_tf32f32_tf32f32_f32_nhwckrsc_nchw_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x8_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1742500.69 μs
Self CPU Time 0.00 μs
Self Device Time 1742500.69 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45305 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:18:20 bugprone-easily-swappable-parameters
18 | float* output, const float* input,
| ^~~~~~~~~~~~~~~~~~~
19 | const float* weight, const float* bias,
| ~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:18:33: note: the first parameter in the range is 'input'
18 | float* output, const float* input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:19:18: note: the last parameter in the range is 'weight'
19 | const float* weight, const float* bias,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:19:26: warning: 3 adjacent parameters of 'batch_norm_warp_kernel' of similar type ('const float *') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const float* weight, const float* bias,
| ^~~~~~~~~~~~~~~~~~
20 | const float* mean, const float* var,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:19:39: note: the first parameter in the range is 'bias'
19 | const float* weight, const float* bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:20:37: note: the last parameter in the range is 'var'
20 | const float* mean, const float* var,
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:24:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
24 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:25:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int global_tid = blockIdx.x * blockDim.x + tid;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:26:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:63:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
63 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:67:5: warning: 2 adjacent parameters of 'dense_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
67 | torch::Tensor bn_var,
| ^~~~~~~~~~~~~~~~~~~~~
68 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:67:19: note: the first parameter in the range is 'bn_var'
67 | torch::Tensor bn_var,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:68:19: note: the last parameter in the range is 'conv_weight'
68 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:68:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
68 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:72:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:72:27: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:72:41: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:72:55: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:104:62: warning: the parameter 'layer_params' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
104 | torch::Tensor dense_block_fn(torch::Tensor x, pybind11::list layer_params, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:124:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
124 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:128:5: warning: 2 adjacent parameters of 'transition_layer_fn' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
128 | torch::Tensor bn_var,
| ^~~~~~~~~~~~~~~~~~~~~
129 | torch::Tensor conv_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:128:19: note: the first parameter in the range is 'bn_var'
128 | torch::Tensor bn_var,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:129:19: note: the last parameter in the range is 'conv_weight'
129 | torch::Tensor conv_weight,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:129:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
129 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:133:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:133:27: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:133:41: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:133:55: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:167:57: warning: the parameter 'params_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
167 | torch::Tensor forward(torch::Tensor x, pybind11::object params_obj, bool is_training) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:183:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:183:27: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:183:41: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:183:55: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
183 | int N = sizes[0], C = sizes[1], H = sizes[2], W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:215:28: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
215 | int num_dense_blocks = dense_blocks.size();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:239:9: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
239 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:239:23: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
239 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:239:37: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
239 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_3/task_16/b4_s2_warp_optimized_densenet_op/base/base.cu:239:51: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
239 | N = sizes[0]; C = sizes[1]; H = sizes[2]; W = sizes[3];
| ^