← Back to Leaderboard

The AI CUDA Engineer 👷

4_LeNet5modular_device_functions_base_base

Level 3 • Task 4
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv1_weight: nn.Parameter,
    conv1_bias: nn.Parameter,
    conv2_weight: nn.Parameter,
    conv2_bias: nn.Parameter,
    fc1_weight: nn.Parameter,
    fc1_bias: nn.Parameter,
    fc2_weight: nn.Parameter,
    fc2_bias: nn.Parameter,
    fc3_weight: nn.Parameter,
    fc3_bias: nn.Parameter,
) -> torch.Tensor:
    """
    Implements a LeNet-5 architecture with ReLU activation.

    Args:
        x (torch.Tensor): The input tensor, shape (batch_size, 1, 32, 32)
        conv1_weight (nn.Parameter): Parameters for first conv layer
        conv1_bias (nn.Parameter): Parameters for first conv layer
        conv2_weight (nn.Parameter): Parameters for second conv layer
        conv2_bias (nn.Parameter): Parameters for second conv layer
        fc1_weight (nn.Parameter): Parameters for first FC layer
        fc1_bias (nn.Parameter): Parameters for first FC layer
        fc2_weight (nn.Parameter): Parameters for second FC layer
        fc3_weight (nn.Parameter): Parameters for third FC layer
        fc3_bias (nn.Parameter): Parameters for third FC layer

    Returns:
        torch.Tensor: The output tensor, shape (batch_size, num_classes)
    """
    # First convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv1_weight, conv1_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Second convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv2_weight, conv2_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Flatten the output for the fully connected layers
    x = x.view(-1, 16 * 5 * 5)

    # First fully connected layer with ReLU activation
    x = F.linear(x, fc1_weight, fc1_bias)
    x = F.relu(x)

    # Second fully connected layer with ReLU activation
    x = F.linear(x, fc2_weight, fc2_bias)
    x = F.relu(x)

    # Final fully connected layer
    x = F.linear(x, fc3_weight, fc3_bias)

    return x


class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()

        # Extract parameters from convolutional layers
        conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv1_weight = nn.Parameter(conv1.weight.data.clone())
        self.conv1_bias = nn.Parameter(conv1.bias.data.clone())

        conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        self.conv2_weight = nn.Parameter(conv2.weight.data.clone())
        self.conv2_bias = nn.Parameter(conv2.bias.data.clone())

        # Extract parameters from fully connected layers
        fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
        self.fc1_weight = nn.Parameter(fc1.weight.data.clone())
        self.fc1_bias = nn.Parameter(fc1.bias.data.clone())

        fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc2_weight = nn.Parameter(fc2.weight.data.clone())
        self.fc2_bias = nn.Parameter(fc2.bias.data.clone())

        fc3 = nn.Linear(in_features=84, out_features=num_classes)
        self.fc3_weight = nn.Parameter(fc3.weight.data.clone())
        self.fc3_bias = nn.Parameter(fc3.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv1_weight,
            self.conv1_bias,
            self.conv2_weight,
            self.conv2_bias,
            self.fc1_weight,
            self.fc1_bias,
            self.fc2_weight,
            self.fc2_bias,
            self.fc3_weight,
            self.fc3_bias,
        )


# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10


def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()
        
        # Convolutional layers
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        
        # Fully connected layers
        self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
    
    def forward(self, x):
        """
        Forward pass of the LeNet-5 model.

        :param x: The input tensor, shape (batch_size, 1, 32, 32)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        # First convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Second convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Flatten the output for the fully connected layers
        x = x.view(-1, 16*5*5)
        
        # First fully connected layer with ReLU activation
        x = F.relu(self.fc1(x))
        
        # Second fully connected layer with ReLU activation
        x = F.relu(self.fc2(x))
        
        # Final fully connected layer
        x = self.fc3(x)
        
        return x

# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10

def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 4 • 4_LeNet5)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 4_LeNet5_fused_even_edit_1 0.05 2.38 1.47
🥇 4_LeNet5_fused_even_base 0.05 2.38 1.47
🥉 warp_uniform_optimized_base 0.05 2.29 1.41
4 modular_device_functions_base_base 0.05 2.25 1.38
4 4_LeNet5 0.05 2.25 1.38
4 optimized_sync_4_lenet5_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_edit_1 0.05 2.25 1.38
4 4_LeNet5_warp_divergence_edit_1 0.05 2.25 1.38
4 4_LeNet5_atomic_optimization_base 0.05 2.25 1.38
4 4_LeNet5_unroll_loops_base 0.05 2.25 1.38
4 4_lenet5_shared_mem_optimization_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_base 0.05 2.25 1.38
4 4_LeNet5_shared_memory_reduction_base 0.05 2.25 1.38
14 4_lenet5_workload_balancing_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_atomic_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_base 0.05 2.20 1.36
14 4_lenet5_memory_coalescing_edit_1 0.05 2.20 1.36
14 balanced_workload_distribution_base 0.05 2.20 1.36
14 no_divergence_fast_base 0.05 2.20 1.36
14 4_LeNet5_unroll_loops_edit_1 0.05 2.20 1.36
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cublas_v2.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>

// Device function for ReLU activation
__device__ float relu(float x) {
    return fmaxf(0.0f, x);
}

// Optimized ReLU kernel using device function
__global__ void relu_kernel(float* input, int size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = blockDim.x * gridDim.x;

    for (int i = idx; i < size; i += stride) {
        input[i] = relu(input[i]);
    }
}

// Device function for max pooling
__device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
    float max_val = -FLT_MAX;
    for (int i = in_h_start; i < in_h_start + pool_height; ++i) {
        for (int j = in_w_start; j < in_w_start + pool_width; ++j) {
            float val = input[i * width + j];
            max_val = fmaxf(max_val, val);
        }
    }
    return max_val;
}

// Optimized max pooling kernel using device function
__global__ void max_pool2d_kernel(
    const float* __restrict__ input, float* __restrict__ output,
    int batch_size, int channels, int height, int width,
    int pool_height, int pool_width, int stride
) {
    int out_h = (height - pool_height) / stride + 1;
    int out_w = (width - pool_width) / stride + 1;
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_threads = blockDim.x * gridDim.x;

    for (; idx < batch_size * channels * out_h * out_w; idx += stride_threads) {
        int b = idx / (channels * out_h * out_w);
        int c = (idx / (out_h * out_w)) % channels;
        int h = (idx / out_w) % out_h;
        int w = idx % out_w;

        int in_h_start = h * stride;
        int in_w_start = w * stride;

        output[idx] = max_pool(&input[((b * channels + c) * height) * width], height, width, in_h_start, in_w_start, pool_height, pool_width);
    }
}

// Device function for linear transformation
__device__ float linear_transform(const float* input, const float* weight, float bias, int in_features) {
    float val = bias;
    for (int i = 0; i < in_features; ++i) {
        val += input[i] * weight[i];
    }
    return val;
}

// Optimized linear layer kernel using device function
__global__ void linear_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int in_features, int out_features
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = blockDim.x * gridDim.x;

    for (; idx < out_features; idx += stride) {
        output[idx] = linear_transform(input, &weight[idx * in_features], bias[idx], in_features);
    }
}

// Forward function for the LeNet-5 architecture
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv1_weight, torch::Tensor conv1_bias,
    torch::Tensor conv2_weight, torch::Tensor conv2_bias,
    torch::Tensor fc1_weight, torch::Tensor fc1_bias,
    torch::Tensor fc2_weight, torch::Tensor fc2_bias,
    torch::Tensor fc3_weight, torch::Tensor fc3_bias
) {
    // Ensure inputs are on CUDA
    x = x.to(torch::kCUDA);
    conv1_weight = conv1_weight.to(torch::kCUDA);
    conv1_bias = conv1_bias.to(torch::kCUDA);
    conv2_weight = conv2_weight.to(torch::kCUDA);
    conv2_bias = conv2_bias.to(torch::kCUDA);
    fc1_weight = fc1_weight.to(torch::kCUDA);
    fc1_bias = fc1_bias.to(torch::kCUDA);
    fc2_weight = fc2_weight.to(torch::kCUDA);
    fc2_bias = fc2_bias.to(torch::kCUDA);
    fc3_weight = fc3_weight.to(torch::kCUDA);
    fc3_bias = fc3_bias.to(torch::kCUDA);

    const int block_size = 256;
    const int max_blocks = 32;

    // First convolutional layer
    auto conv1 = torch::conv2d(x, conv1_weight, conv1_bias, {1, 1});
    relu_kernel<<<max_blocks, block_size>>>(conv1.data_ptr<float>(), conv1.numel());
    auto pool1 = torch::max_pool2d(conv1, {2, 2}, {2, 2});

    // Second convolutional layer
    auto conv2 = torch::conv2d(pool1, conv2_weight, conv2_bias, {1, 1});
    relu_kernel<<<max_blocks, block_size>>>(conv2.data_ptr<float>(), conv2.numel());
    auto pool2 = torch::max_pool2d(conv2, {2, 2}, {2, 2});

    // Flatten the output
    auto flat = pool2.view({pool2.size(0), -1});

    // First fully connected layer
    auto fc1 = torch::linear(flat, fc1_weight, fc1_bias);
    relu_kernel<<<max_blocks, block_size>>>(fc1.data_ptr<float>(), fc1.numel());

    // Second fully connected layer
    auto fc2 = torch::linear(fc1, fc2_weight, fc2_bias);
    relu_kernel<<<max_blocks, block_size>>>(fc2.data_ptr<float>(), fc2.numel());

    // Final fully connected layer
    auto fc3 = torch::linear(fc2, fc3_weight, fc3_bias);

    return fc3;
}

// PyBind11 module definition
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "LeNet-5 forward pass");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 1015717.38 μs
Device Time 278716.12 μs
Self CPU Time 40902.06 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 974815.32 μs
Device Time 278716.12 μs
Self CPU Time 52949.64 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 921865.68 μs
Device Time 278716.12 μs
Self CPU Time 108705.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 680875.27 μs
Device Time 40022.29 μs
Self CPU Time 680875.27 μs
Self Device Time 40022.29 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 679635.60 μs
Device Time 149615.70 μs
Self CPU Time 59322.96 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 111523.75 μs
Device Time 980954.69 μs
Self CPU Time 24333.13 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 87192.19 μs
Device Time 980954.69 μs
Self CPU Time 32098.95 μs
Self Device Time 980954.69 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 980954.69 μs
Self CPU Time 0.00 μs
Self Device Time 980954.69 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45315 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:16:15 bugprone-narrowing-conversions
16 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:17:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:47: warning: 4 adjacent parameters of 'max_pool' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:51: note: the first parameter in the range is 'height'
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:90: note: the last parameter in the range is 'in_w_start'
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:102: warning: 2 adjacent parameters of 'max_pool' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:106: note: the first parameter in the range is 'pool_height'
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:25:123: note: the last parameter in the range is 'pool_width'
25 | __device__ float max_pool(const float* input, int height, int width, int in_h_start, int in_w_start, int pool_height, int pool_width) {
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:44:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:45:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | int stride_threads = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:56:33: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
56 | output[idx] = max_pool(&input[((b * channels + c) * height) * width], height, width, in_h_start, in_w_start, pool_height, pool_width);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:56:39: note: make conversion explicit to silence this warning
8 | output[idx] = max_pool(&input[((b * channels + c) * height) * width], height, width, in_h_start, in_w_start, pool_height, pool_width);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:56:39: note: perform multiplication in a wider type
56 | output[idx] = max_pool(&input[((b * channels + c) * height) * width], height, width, in_h_start, in_w_start, pool_height, pool_width);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:61:76: warning: 2 adjacent parameters of 'linear_transform' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
61 | __device__ float linear_transform(const float* input, const float* weight, float bias, int in_features) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:61:82: note: the first parameter in the range is 'bias'
61 | __device__ float linear_transform(const float* input, const float* weight, float bias, int in_features) {
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:61:92: note: the last parameter in the range is 'in_features'
61 | __device__ float linear_transform(const float* input, const float* weight, float bias, int in_features) {
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:61:88: note: 'float' and 'int' may be implicitly converted
61 | __device__ float linear_transform(const float* input, const float* weight, float bias, int in_features) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:75:5: warning: 2 adjacent parameters of 'linear_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
75 | int in_features, int out_features
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:75:9: note: the first parameter in the range is 'in_features'
75 | int in_features, int out_features
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:75:26: note: the last parameter in the range is 'out_features'
75 | int in_features, int out_features
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:77:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
77 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:78:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:81:48: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
81 | output[idx] = linear_transform(input, &weight[idx * in_features], bias[idx], in_features);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:81:55: note: make conversion explicit to silence this warning
81 | output[idx] = linear_transform(input, &weight[idx * in_features], bias[idx], in_features);
| ^~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:81:55: note: perform multiplication in a wider type
81 | output[idx] = linear_transform(input, &weight[idx * in_features], bias[idx], in_features);
| ^~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:112:70: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | relu_kernel<<<max_blocks, block_size>>>(conv1.data_ptr<float>(), conv1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:117:70: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | relu_kernel<<<max_blocks, block_size>>>(conv2.data_ptr<float>(), conv2.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:125:68: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | relu_kernel<<<max_blocks, block_size>>>(fc1.data_ptr<float>(), fc1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b6_s1_modular_device_functions_base/base/base.cu:129:68: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
129 | relu_kernel<<<max_blocks, block_size>>>(fc2.data_ptr<float>(), fc2.numel());
| ^