← Back to Leaderboard

The AI CUDA Engineer 👷

4_LeNet5warp_uniform_optimized_base

Level 3 • Task 4
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv1_weight: nn.Parameter,
    conv1_bias: nn.Parameter,
    conv2_weight: nn.Parameter,
    conv2_bias: nn.Parameter,
    fc1_weight: nn.Parameter,
    fc1_bias: nn.Parameter,
    fc2_weight: nn.Parameter,
    fc2_bias: nn.Parameter,
    fc3_weight: nn.Parameter,
    fc3_bias: nn.Parameter,
) -> torch.Tensor:
    """
    Implements a LeNet-5 architecture with ReLU activation.

    Args:
        x (torch.Tensor): The input tensor, shape (batch_size, 1, 32, 32)
        conv1_weight (nn.Parameter): Parameters for first conv layer
        conv1_bias (nn.Parameter): Parameters for first conv layer
        conv2_weight (nn.Parameter): Parameters for second conv layer
        conv2_bias (nn.Parameter): Parameters for second conv layer
        fc1_weight (nn.Parameter): Parameters for first FC layer
        fc1_bias (nn.Parameter): Parameters for first FC layer
        fc2_weight (nn.Parameter): Parameters for second FC layer
        fc3_weight (nn.Parameter): Parameters for third FC layer
        fc3_bias (nn.Parameter): Parameters for third FC layer

    Returns:
        torch.Tensor: The output tensor, shape (batch_size, num_classes)
    """
    # First convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv1_weight, conv1_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Second convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv2_weight, conv2_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Flatten the output for the fully connected layers
    x = x.view(-1, 16 * 5 * 5)

    # First fully connected layer with ReLU activation
    x = F.linear(x, fc1_weight, fc1_bias)
    x = F.relu(x)

    # Second fully connected layer with ReLU activation
    x = F.linear(x, fc2_weight, fc2_bias)
    x = F.relu(x)

    # Final fully connected layer
    x = F.linear(x, fc3_weight, fc3_bias)

    return x


class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()

        # Extract parameters from convolutional layers
        conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv1_weight = nn.Parameter(conv1.weight.data.clone())
        self.conv1_bias = nn.Parameter(conv1.bias.data.clone())

        conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        self.conv2_weight = nn.Parameter(conv2.weight.data.clone())
        self.conv2_bias = nn.Parameter(conv2.bias.data.clone())

        # Extract parameters from fully connected layers
        fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
        self.fc1_weight = nn.Parameter(fc1.weight.data.clone())
        self.fc1_bias = nn.Parameter(fc1.bias.data.clone())

        fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc2_weight = nn.Parameter(fc2.weight.data.clone())
        self.fc2_bias = nn.Parameter(fc2.bias.data.clone())

        fc3 = nn.Linear(in_features=84, out_features=num_classes)
        self.fc3_weight = nn.Parameter(fc3.weight.data.clone())
        self.fc3_bias = nn.Parameter(fc3.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv1_weight,
            self.conv1_bias,
            self.conv2_weight,
            self.conv2_bias,
            self.fc1_weight,
            self.fc1_bias,
            self.fc2_weight,
            self.fc2_bias,
            self.fc3_weight,
            self.fc3_bias,
        )


# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10


def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()
        
        # Convolutional layers
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        
        # Fully connected layers
        self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
    
    def forward(self, x):
        """
        Forward pass of the LeNet-5 model.

        :param x: The input tensor, shape (batch_size, 1, 32, 32)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        # First convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Second convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Flatten the output for the fully connected layers
        x = x.view(-1, 16*5*5)
        
        # First fully connected layer with ReLU activation
        x = F.relu(self.fc1(x))
        
        # Second fully connected layer with ReLU activation
        x = F.relu(self.fc2(x))
        
        # Final fully connected layer
        x = self.fc3(x)
        
        return x

# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10

def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 4 • 4_LeNet5)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 4_LeNet5_fused_even_edit_1 0.05 2.38 1.47
🥇 4_LeNet5_fused_even_base 0.05 2.38 1.47
🥉 warp_uniform_optimized_base 0.05 2.29 1.41
4 modular_device_functions_base_base 0.05 2.25 1.38
4 4_LeNet5 0.05 2.25 1.38
4 optimized_sync_4_lenet5_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_edit_1 0.05 2.25 1.38
4 4_LeNet5_warp_divergence_edit_1 0.05 2.25 1.38
4 4_LeNet5_atomic_optimization_base 0.05 2.25 1.38
4 4_LeNet5_unroll_loops_base 0.05 2.25 1.38
4 4_lenet5_shared_mem_optimization_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_base 0.05 2.25 1.38
4 4_LeNet5_shared_memory_reduction_base 0.05 2.25 1.38
14 4_lenet5_workload_balancing_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_atomic_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_base 0.05 2.20 1.36
14 4_lenet5_memory_coalescing_edit_1 0.05 2.20 1.36
14 balanced_workload_distribution_base 0.05 2.20 1.36
14 no_divergence_fast_base 0.05 2.20 1.36
14 4_LeNet5_unroll_loops_edit_1 0.05 2.20 1.36
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cublas_v2.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>

// ReLU kernel using fixed iteration loops with predicated operations
// The boundary check is implemented via a ternary operator to help the compiler generate predicated instructions,
// minimizing warp divergence for threads in the last (partial) iteration.
__global__ void relu_kernel(float* input, int size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = gridDim.x * blockDim.x;
    int iterations = (size + stride - 1) / stride;
    for (int i = 0; i < iterations; i++) {
        int pos = idx + i * stride;
        // Use a ternary operator to load a valid value; out‐of‐bounds threads load 0.0f
        float val = (pos < size) ? input[pos] : 0.0f;
        float res = fmaxf(0.0f, val);
        if (pos < size) {
            input[pos] = res;
        }
    }
}

// Optimized 2x2 max pooling kernel with uniform control flow
// Assumes pooling window is 2x2 with stride 2. The inner max calculation uses branchless fmaxf calls.
__global__ void max_pool2d_kernel(const float* __restrict__ input, float* __restrict__ output,
    int batch_size, int channels, int height, int width, int stride) {
    // Compute output dimensions (assumes height and width are divisible by 2)
    int out_h = height / 2;
    int out_w = width / 2;
    int total = batch_size * channels * out_h * out_w;
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_total = gridDim.x * blockDim.x;
    for (int i = idx; i < total; i += stride_total) {
         int temp = i;
         int b = temp / (channels * out_h * out_w);
         temp = temp % (channels * out_h * out_w);
         int c = temp / (out_h * out_w);
         temp = temp % (out_h * out_w);
         int ph = temp / out_w;
         int pw = temp % out_w;
         int h_offset = ph * stride;
         int w_offset = pw * stride;
         int base = ((b * channels + c) * height);
         const float* row0 = input + (base + h_offset) * width + w_offset;
         const float* row1 = row0 + width;
         float m0 = fmaxf(row0[0], row0[1]);
         float m1 = fmaxf(row1[0], row1[1]);
         output[i] = fmaxf(m0, m1);
    }
}

// Flatten kernel to copy data with uniform loop execution
__global__ void flatten_kernel(const float* input, float* output, int size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = gridDim.x * blockDim.x;
    int iterations = (size + stride - 1) / stride;
    for (int i = 0; i < iterations; i++) {
         int pos = idx + i * stride;
         if (pos < size) {
             output[pos] = input[pos];
         }
    }
}

// Forward function implementing a LeNet-5 architecture using custom kernels
// The conv and fc layers use PyTorch operators to ensure numerical correctness, while custom CUDA kernels
// (relu_kernel and max_pool2d_kernel) are used to reduce warp divergence in elementwise and pooling operations.
// Note: The max pooling kernel is specialized for 2x2 pooling (stride = 2).

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv1_weight, torch::Tensor conv1_bias,
    torch::Tensor conv2_weight, torch::Tensor conv2_bias,
    torch::Tensor fc1_weight, torch::Tensor fc1_bias,
    torch::Tensor fc2_weight, torch::Tensor fc2_bias,
    torch::Tensor fc3_weight, torch::Tensor fc3_bias
) {
    // Move inputs to CUDA and ensure contiguous layout
    x = x.to(torch::kCUDA);
    conv1_weight = conv1_weight.to(torch::kCUDA);
    conv1_bias = conv1_bias.to(torch::kCUDA);
    conv2_weight = conv2_weight.to(torch::kCUDA);
    conv2_bias = conv2_bias.to(torch::kCUDA);
    fc1_weight = fc1_weight.to(torch::kCUDA);
    fc1_bias = fc1_bias.to(torch::kCUDA);
    fc2_weight = fc2_weight.to(torch::kCUDA);
    fc2_bias = fc2_bias.to(torch::kCUDA);
    fc3_weight = fc3_weight.to(torch::kCUDA);
    fc3_bias = fc3_bias.to(torch::kCUDA);

    const int block_size = 256;
    const int num_blocks = 32;

    // First convolutional layer followed by ReLU activation
    auto conv1 = torch::conv2d(x, conv1_weight, conv1_bias, {1, 1});
    relu_kernel<<<num_blocks, block_size>>>(conv1.data_ptr<float>(), conv1.numel());

    // Custom 2x2 max pooling: allocate output tensor and apply kernel (stride = 2)
    auto pool1 = torch::empty({conv1.size(0), conv1.size(1), conv1.size(2) / 2, conv1.size(3) / 2}, conv1.options());
    max_pool2d_kernel<<<num_blocks, block_size>>>(conv1.data_ptr<float>(), pool1.data_ptr<float>(),
         conv1.size(0), conv1.size(1), conv1.size(2), conv1.size(3), 2);

    // Second convolutional layer followed by ReLU activation
    auto conv2 = torch::conv2d(pool1, conv2_weight, conv2_bias, {1, 1});
    relu_kernel<<<num_blocks, block_size>>>(conv2.data_ptr<float>(), conv2.numel());
    auto pool2 = torch::empty({conv2.size(0), conv2.size(1), conv2.size(2) / 2, conv2.size(3) / 2}, conv2.options());
    max_pool2d_kernel<<<num_blocks, block_size>>>(conv2.data_ptr<float>(), pool2.data_ptr<float>(),
         conv2.size(0), conv2.size(1), conv2.size(2), conv2.size(3), 2);

    // Flatten the pooled output
    auto flat = pool2.view({pool2.size(0), -1});

    // Fully connected layers use torch::linear to preserve high precision;
    // custom ReLU is applied between fc layers to reduce divergent branching in elementwise operations.
    auto fc1 = torch::linear(flat, fc1_weight, fc1_bias);
    relu_kernel<<<num_blocks, block_size>>>(fc1.data_ptr<float>(), fc1.numel());
    auto fc2 = torch::linear(fc1, fc2_weight, fc2_bias);
    relu_kernel<<<num_blocks, block_size>>>(fc2.data_ptr<float>(), fc2.numel());
    auto fc3 = torch::linear(fc2, fc3_weight, fc3_bias);

    return fc3;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "LeNet-5 forward pass");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 1060134.12 μs
Device Time 291596.04 μs
Self CPU Time 43105.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1017028.42 μs
Device Time 291596.04 μs
Self CPU Time 54020.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 963007.84 μs
Device Time 291596.04 μs
Self CPU Time 110858.38 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 795726.57 μs
Device Time 56125.12 μs
Self CPU Time 795726.57 μs
Self Device Time 56125.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 737780.70 μs
Device Time 154307.00 μs
Self CPU Time 63567.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 127481.86 μs
Device Time 1019681.06 μs
Self CPU Time 30646.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 96836.52 μs
Device Time 1019681.06 μs
Self CPU Time 35766.77 μs
Self Device Time 1019681.06 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1019681.06 μs
Self CPU Time 0.00 μs
Self Device Time 1019681.06 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45319 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:13:15 bugprone-narrowing-conversions
13 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:14:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
14 | int stride = gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:30:35: warning: 3 adjacent parameters of 'max_pool2d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
30 | int batch_size, int channels, int height, int width, int stride) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:30:39: note: the first parameter in the range is 'height'
30 | int batch_size, int channels, int height, int width, int stride) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:30:62: note: the last parameter in the range is 'stride'
30 | int batch_size, int channels, int height, int width, int stride) {
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:35:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
35 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:36:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int stride_total = gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:48:30: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
48 | const float* row0 = input + (base + h_offset) * width + w_offset;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:48:38: note: make conversion explicit to silence this warning
8 | const float* row0 = input + (base + h_offset) * width + w_offset;
| ^~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:48:38: note: perform multiplication in a wider type
48 | const float* row0 = input + (base + h_offset) * width + w_offset;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:58:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:59:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int stride = gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:100:70: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | relu_kernel<<<num_blocks, block_size>>>(conv1.data_ptr<float>(), conv1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:105:10: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | conv1.size(0), conv1.size(1), conv1.size(2), conv1.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:105:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | conv1.size(0), conv1.size(1), conv1.size(2), conv1.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:105:40: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | conv1.size(0), conv1.size(1), conv1.size(2), conv1.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:105:55: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
105 | conv1.size(0), conv1.size(1), conv1.size(2), conv1.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:109:70: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
109 | relu_kernel<<<num_blocks, block_size>>>(conv2.data_ptr<float>(), conv2.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:112:10: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | conv2.size(0), conv2.size(1), conv2.size(2), conv2.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:112:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | conv2.size(0), conv2.size(1), conv2.size(2), conv2.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:112:40: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | conv2.size(0), conv2.size(1), conv2.size(2), conv2.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:112:55: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | conv2.size(0), conv2.size(1), conv2.size(2), conv2.size(3), 2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:120:68: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
120 | relu_kernel<<<num_blocks, block_size>>>(fc1.data_ptr<float>(), fc1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_3/task_4/b9_s1_warp_uniform_optimized/base/base.cu:122:68: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
122 | relu_kernel<<<num_blocks, block_size>>>(fc2.data_ptr<float>(), fc2.numel());
| ^