← Back to Leaderboard

The AI CUDA Engineer 👷

4_LeNet54_LeNet5_warp_divergence_edit_1

Level 3 • Task 4
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv1_weight: nn.Parameter,
    conv1_bias: nn.Parameter,
    conv2_weight: nn.Parameter,
    conv2_bias: nn.Parameter,
    fc1_weight: nn.Parameter,
    fc1_bias: nn.Parameter,
    fc2_weight: nn.Parameter,
    fc2_bias: nn.Parameter,
    fc3_weight: nn.Parameter,
    fc3_bias: nn.Parameter,
) -> torch.Tensor:
    """
    Implements a LeNet-5 architecture with ReLU activation.

    Args:
        x (torch.Tensor): The input tensor, shape (batch_size, 1, 32, 32)
        conv1_weight (nn.Parameter): Parameters for first conv layer
        conv1_bias (nn.Parameter): Parameters for first conv layer
        conv2_weight (nn.Parameter): Parameters for second conv layer
        conv2_bias (nn.Parameter): Parameters for second conv layer
        fc1_weight (nn.Parameter): Parameters for first FC layer
        fc1_bias (nn.Parameter): Parameters for first FC layer
        fc2_weight (nn.Parameter): Parameters for second FC layer
        fc3_weight (nn.Parameter): Parameters for third FC layer
        fc3_bias (nn.Parameter): Parameters for third FC layer

    Returns:
        torch.Tensor: The output tensor, shape (batch_size, num_classes)
    """
    # First convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv1_weight, conv1_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Second convolutional layer with ReLU activation and max pooling
    x = F.conv2d(x, conv2_weight, conv2_bias, stride=1)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2, stride=2)

    # Flatten the output for the fully connected layers
    x = x.view(-1, 16 * 5 * 5)

    # First fully connected layer with ReLU activation
    x = F.linear(x, fc1_weight, fc1_bias)
    x = F.relu(x)

    # Second fully connected layer with ReLU activation
    x = F.linear(x, fc2_weight, fc2_bias)
    x = F.relu(x)

    # Final fully connected layer
    x = F.linear(x, fc3_weight, fc3_bias)

    return x


class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()

        # Extract parameters from convolutional layers
        conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv1_weight = nn.Parameter(conv1.weight.data.clone())
        self.conv1_bias = nn.Parameter(conv1.bias.data.clone())

        conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        self.conv2_weight = nn.Parameter(conv2.weight.data.clone())
        self.conv2_bias = nn.Parameter(conv2.bias.data.clone())

        # Extract parameters from fully connected layers
        fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
        self.fc1_weight = nn.Parameter(fc1.weight.data.clone())
        self.fc1_bias = nn.Parameter(fc1.bias.data.clone())

        fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc2_weight = nn.Parameter(fc2.weight.data.clone())
        self.fc2_bias = nn.Parameter(fc2.bias.data.clone())

        fc3 = nn.Linear(in_features=84, out_features=num_classes)
        self.fc3_weight = nn.Parameter(fc3.weight.data.clone())
        self.fc3_bias = nn.Parameter(fc3.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.conv1_weight,
            self.conv1_bias,
            self.conv2_weight,
            self.conv2_bias,
            self.fc1_weight,
            self.fc1_bias,
            self.fc2_weight,
            self.fc2_bias,
            self.fc3_weight,
            self.fc3_bias,
        )


# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10


def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]


def get_init_inputs():
    return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self, num_classes):
        """
        LeNet-5 architecture implementation in PyTorch.

        :param num_classes: The number of output classes.
        """
        super(Model, self).__init__()
        
        # Convolutional layers
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        
        # Fully connected layers
        self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
        self.fc2 = nn.Linear(in_features=120, out_features=84)
        self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
    
    def forward(self, x):
        """
        Forward pass of the LeNet-5 model.

        :param x: The input tensor, shape (batch_size, 1, 32, 32)
        :return: The output tensor, shape (batch_size, num_classes)
        """
        # First convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Second convolutional layer with ReLU activation and max pooling
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, kernel_size=2, stride=2)
        
        # Flatten the output for the fully connected layers
        x = x.view(-1, 16*5*5)
        
        # First fully connected layer with ReLU activation
        x = F.relu(self.fc1(x))
        
        # Second fully connected layer with ReLU activation
        x = F.relu(self.fc2(x))
        
        # Final fully connected layer
        x = self.fc3(x)
        
        return x

# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10

def get_inputs():
    return [torch.randn(batch_size, 1, 32, 32)]

def get_init_inputs():
    return [num_classes]

Kernel Information

Related Kernels (Level 3, Task 4 • 4_LeNet5)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 4_LeNet5_fused_even_edit_1 0.05 2.38 1.47
🥇 4_LeNet5_fused_even_base 0.05 2.38 1.47
🥉 warp_uniform_optimized_base 0.05 2.29 1.41
4 modular_device_functions_base_base 0.05 2.25 1.38
4 4_LeNet5 0.05 2.25 1.38
4 optimized_sync_4_lenet5_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_edit_1 0.05 2.25 1.38
4 4_LeNet5_warp_divergence_edit_1 0.05 2.25 1.38
4 4_LeNet5_atomic_optimization_base 0.05 2.25 1.38
4 4_LeNet5_unroll_loops_base 0.05 2.25 1.38
4 4_lenet5_shared_mem_optimization_base 0.05 2.25 1.38
4 4_LeNet5_strided_loops_base 0.05 2.25 1.38
4 4_LeNet5_shared_memory_reduction_base 0.05 2.25 1.38
14 4_lenet5_workload_balancing_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_atomic_base 0.05 2.20 1.36
14 4_LeNet5_shared_memory_base 0.05 2.20 1.36
14 4_lenet5_memory_coalescing_edit_1 0.05 2.20 1.36
14 balanced_workload_distribution_base 0.05 2.20 1.36
14 no_divergence_fast_base 0.05 2.20 1.36
14 4_LeNet5_unroll_loops_edit_1 0.05 2.20 1.36
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cublas_v2.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>

// CUDA kernel for ReLU activation
__global__ void relu_kernel(float* input, int size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < size) {
        input[idx] = fmaxf(0.0f, input[idx]);
    }
}

// CUDA kernel for max pooling with minimized warp divergence
__global__ void max_pool2d_kernel_min_warp_divergence(
    const float* input, float* output,
    int batch_size, int channels, int height, int width,
    int pool_height, int pool_width, int stride
) {
    int out_h = (height - pool_height) / stride + 1;
    int out_w = (width - pool_width) / stride + 1;

    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < batch_size * channels * out_h * out_w) {
        int b = idx / (channels * out_h * out_w);
        int c = (idx / (out_h * out_w)) % channels;
        int h = (idx / out_w) % out_h;
        int w = idx % out_w;

        int in_h_start = h * stride;
        int in_w_start = w * stride;
        int in_h_end = in_h_start + pool_height;
        int in_w_end = in_w_start + pool_width;

        float max_val = input[((b * channels + c) * height + in_h_start) * width + in_w_start];
        for (int i = in_h_start; i < in_h_end; ++i) {
            for (int j = in_w_start; j < in_w_end; ++j) {
                float val = input[((b * channels + c) * height + i) * width + j];
                max_val = fmaxf(max_val, val);
            }
        }
        output[idx] = max_val;
    }
}

// CUDA kernel for flattening
__global__ void flatten_kernel(const float* input, float* output, int size) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < size) {
        output[idx] = input[idx];
    }
}

// CUDA kernel for linear layer
__global__ void linear_kernel(
    const float* input, const float* weight, const float* bias,
    float* output, int in_features, int out_features
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < out_features) {
        float val = bias[idx];
        for (int i = 0; i < in_features; ++i) {
            val += input[i] * weight[idx * in_features + i];
        }
        output[idx] = val;
    }
}

// Forward function for the LeNet-5 architecture
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv1_weight, torch::Tensor conv1_bias,
    torch::Tensor conv2_weight, torch::Tensor conv2_bias,
    torch::Tensor fc1_weight, torch::Tensor fc1_bias,
    torch::Tensor fc2_weight, torch::Tensor fc2_bias,
    torch::Tensor fc3_weight, torch::Tensor fc3_bias
) {
    // Ensure inputs are on CUDA
    x = x.to(torch::kCUDA);
    conv1_weight = conv1_weight.to(torch::kCUDA);
    conv1_bias = conv1_bias.to(torch::kCUDA);
    conv2_weight = conv2_weight.to(torch::kCUDA);
    conv2_bias = conv2_bias.to(torch::kCUDA);
    fc1_weight = fc1_weight.to(torch::kCUDA);
    fc1_bias = fc1_bias.to(torch::kCUDA);
    fc2_weight = fc2_weight.to(torch::kCUDA);
    fc2_bias = fc2_bias.to(torch::kCUDA);
    fc3_weight = fc3_weight.to(torch::kCUDA);
    fc3_bias = fc3_bias.to(torch::kCUDA);

    // First convolutional layer
    auto conv1 = torch::conv2d(x, conv1_weight, conv1_bias, {1, 1});
    relu_kernel<<<(conv1.numel() + 255) / 256, 256>>>(conv1.data_ptr<float>(), conv1.numel());
    auto pool1 = torch::max_pool2d(conv1, {2, 2}, {2, 2});

    // Second convolutional layer
    auto conv2 = torch::conv2d(pool1, conv2_weight, conv2_bias, {1, 1});
    relu_kernel<<<(conv2.numel() + 255) / 256, 256>>>(conv2.data_ptr<float>(), conv2.numel());
    auto pool2 = torch::max_pool2d(conv2, {2, 2}, {2, 2});

    // Flatten the output
    auto flat = pool2.view({pool2.size(0), -1});

    // First fully connected layer
    auto fc1 = torch::linear(flat, fc1_weight, fc1_bias);
    relu_kernel<<<(fc1.numel() + 255) / 256, 256>>>(fc1.data_ptr<float>(), fc1.numel());

    // Second fully connected layer
    auto fc2 = torch::linear(fc1, fc2_weight, fc2_bias);
    relu_kernel<<<(fc2.numel() + 255) / 256, 256>>>(fc2.data_ptr<float>(), fc2.numel());

    // Final fully connected layer
    auto fc3 = torch::linear(fc2, fc3_weight, fc3_bias);

    return fc3;
}

// PyBind11 module definition
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "LeNet-5 forward pass");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv2d
CPU Time 992708.15 μs
Device Time 273300.89 μs
Self CPU Time 37846.33 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 954861.81 μs
Device Time 273300.89 μs
Self CPU Time 48972.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 905888.84 μs
Device Time 273300.89 μs
Self CPU Time 100578.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 643476.88 μs
Device Time 39064.24 μs
Self CPU Time 643476.88 μs
Self Device Time 39064.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::linear
CPU Time 648851.39 μs
Device Time 149557.60 μs
Self CPU Time 55861.57 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 104889.32 μs
Device Time 953834.35 μs
Self CPU Time 24838.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 80051.91 μs
Device Time 953834.35 μs
Self CPU Time 30582.27 μs
Self Device Time 953834.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 953834.35 μs
Self CPU Time 0.00 μs
Self Device Time 953834.35 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45310 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:11:15 bugprone-narrowing-conversions
11 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:20:47: warning: 2 adjacent parameters of 'max_pool2d_kernel_min_warp_divergence' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
20 | int batch_size, int channels, int height, int width,
| ^~~~~~~~~~
21 | int pool_height, int pool_width, int stride
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:20:51: note: the first parameter in the range is 'width'
20 | int batch_size, int channels, int height, int width,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:21:9: note: the last parameter in the range is 'pool_height'
21 | int pool_height, int pool_width, int stride
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:26:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:51:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
51 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:59:25: warning: 2 adjacent parameters of 'linear_kernel' of similar type ('const float *') are easily swapped by mistake [bugprone-easily-swappable-parameters]
59 | const float* input, const float* weight, const float* bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:59:38: note: the first parameter in the range is 'weight'
59 | const float* input, const float* weight, const float* bias,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:59:59: note: the last parameter in the range is 'bias'
59 | const float* input, const float* weight, const float* bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:60:20: warning: 2 adjacent parameters of 'linear_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
60 | float* output, int in_features, int out_features
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:60:24: note: the first parameter in the range is 'in_features'
60 | float* output, int in_features, int out_features
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:60:41: note: the last parameter in the range is 'out_features'
60 | float* output, int in_features, int out_features
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:62:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
62 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:96:80: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | relu_kernel<<<(conv1.numel() + 255) / 256, 256>>>(conv1.data_ptr<float>(), conv1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:101:80: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | relu_kernel<<<(conv2.numel() + 255) / 256, 256>>>(conv2.data_ptr<float>(), conv2.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:109:76: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
109 | relu_kernel<<<(fc1.numel() + 255) / 256, 256>>>(fc1.data_ptr<float>(), fc1.numel());
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_3/task_4/b3_s0_4_LeNet5_warp_divergence/edit_1/edit_1.cu:113:76: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | relu_kernel<<<(fc2.numel() + 255) / 256, 256>>>(fc2.data_ptr<float>(), fc2.numel());
| ^