import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
conv1_weight: nn.Parameter,
conv1_bias: nn.Parameter,
conv2_weight: nn.Parameter,
conv2_bias: nn.Parameter,
fc1_weight: nn.Parameter,
fc1_bias: nn.Parameter,
fc2_weight: nn.Parameter,
fc2_bias: nn.Parameter,
fc3_weight: nn.Parameter,
fc3_bias: nn.Parameter,
) -> torch.Tensor:
"""
Implements a LeNet-5 architecture with ReLU activation.
Args:
x (torch.Tensor): The input tensor, shape (batch_size, 1, 32, 32)
conv1_weight (nn.Parameter): Parameters for first conv layer
conv1_bias (nn.Parameter): Parameters for first conv layer
conv2_weight (nn.Parameter): Parameters for second conv layer
conv2_bias (nn.Parameter): Parameters for second conv layer
fc1_weight (nn.Parameter): Parameters for first FC layer
fc1_bias (nn.Parameter): Parameters for first FC layer
fc2_weight (nn.Parameter): Parameters for second FC layer
fc3_weight (nn.Parameter): Parameters for third FC layer
fc3_bias (nn.Parameter): Parameters for third FC layer
Returns:
torch.Tensor: The output tensor, shape (batch_size, num_classes)
"""
# First convolutional layer with ReLU activation and max pooling
x = F.conv2d(x, conv1_weight, conv1_bias, stride=1)
x = F.relu(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Second convolutional layer with ReLU activation and max pooling
x = F.conv2d(x, conv2_weight, conv2_bias, stride=1)
x = F.relu(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Flatten the output for the fully connected layers
x = x.view(-1, 16 * 5 * 5)
# First fully connected layer with ReLU activation
x = F.linear(x, fc1_weight, fc1_bias)
x = F.relu(x)
# Second fully connected layer with ReLU activation
x = F.linear(x, fc2_weight, fc2_bias)
x = F.relu(x)
# Final fully connected layer
x = F.linear(x, fc3_weight, fc3_bias)
return x
class Model(nn.Module):
def __init__(self, num_classes):
"""
LeNet-5 architecture implementation in PyTorch.
:param num_classes: The number of output classes.
"""
super(Model, self).__init__()
# Extract parameters from convolutional layers
conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
self.conv1_weight = nn.Parameter(conv1.weight.data.clone())
self.conv1_bias = nn.Parameter(conv1.bias.data.clone())
conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.conv2_weight = nn.Parameter(conv2.weight.data.clone())
self.conv2_bias = nn.Parameter(conv2.bias.data.clone())
# Extract parameters from fully connected layers
fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
self.fc1_weight = nn.Parameter(fc1.weight.data.clone())
self.fc1_bias = nn.Parameter(fc1.bias.data.clone())
fc2 = nn.Linear(in_features=120, out_features=84)
self.fc2_weight = nn.Parameter(fc2.weight.data.clone())
self.fc2_bias = nn.Parameter(fc2.bias.data.clone())
fc3 = nn.Linear(in_features=84, out_features=num_classes)
self.fc3_weight = nn.Parameter(fc3.weight.data.clone())
self.fc3_bias = nn.Parameter(fc3.bias.data.clone())
def forward(self, x, fn=module_fn):
return fn(
x,
self.conv1_weight,
self.conv1_bias,
self.conv2_weight,
self.conv2_bias,
self.fc1_weight,
self.fc1_bias,
self.fc2_weight,
self.fc2_bias,
self.fc3_weight,
self.fc3_bias,
)
# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10
def get_inputs():
return [torch.randn(batch_size, 1, 32, 32)]
def get_init_inputs():
return [num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, num_classes):
"""
LeNet-5 architecture implementation in PyTorch.
:param num_classes: The number of output classes.
"""
super(Model, self).__init__()
# Convolutional layers
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
# Fully connected layers
self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
"""
Forward pass of the LeNet-5 model.
:param x: The input tensor, shape (batch_size, 1, 32, 32)
:return: The output tensor, shape (batch_size, num_classes)
"""
# First convolutional layer with ReLU activation and max pooling
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Second convolutional layer with ReLU activation and max pooling
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Flatten the output for the fully connected layers
x = x.view(-1, 16*5*5)
# First fully connected layer with ReLU activation
x = F.relu(self.fc1(x))
# Second fully connected layer with ReLU activation
x = F.relu(self.fc2(x))
# Final fully connected layer
x = self.fc3(x)
return x
# Test code for the LeNet-5 model
batch_size = 1
num_classes = 10
def get_inputs():
return [torch.randn(batch_size, 1, 32, 32)]
def get_init_inputs():
return [num_classes]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cublas_v2.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>
// CUDA kernel for ReLU activation
__global__ void relu_kernel(float* input, int size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {
input[idx] = fmaxf(0.0f, input[idx]);
}
}
// CUDA kernel for max pooling with minimized warp divergence
__global__ void max_pool2d_kernel_min_warp_divergence(
const float* input, float* output,
int batch_size, int channels, int height, int width,
int pool_height, int pool_width, int stride
) {
int out_h = (height - pool_height) / stride + 1;
int out_w = (width - pool_width) / stride + 1;
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < batch_size * channels * out_h * out_w) {
int b = idx / (channels * out_h * out_w);
int c = (idx / (out_h * out_w)) % channels;
int h = (idx / out_w) % out_h;
int w = idx % out_w;
int in_h_start = h * stride;
int in_w_start = w * stride;
int in_h_end = in_h_start + pool_height;
int in_w_end = in_w_start + pool_width;
float max_val = input[((b * channels + c) * height + in_h_start) * width + in_w_start];
for (int i = in_h_start; i < in_h_end; ++i) {
for (int j = in_w_start; j < in_w_end; ++j) {
float val = input[((b * channels + c) * height + i) * width + j];
max_val = fmaxf(max_val, val);
}
}
output[idx] = max_val;
}
}
// CUDA kernel for flattening
__global__ void flatten_kernel(const float* input, float* output, int size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {
output[idx] = input[idx];
}
}
// CUDA kernel for linear layer
__global__ void linear_kernel(
const float* input, const float* weight, const float* bias,
float* output, int in_features, int out_features
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < out_features) {
float val = bias[idx];
for (int i = 0; i < in_features; ++i) {
val += input[i] * weight[idx * in_features + i];
}
output[idx] = val;
}
}
// Forward function for the LeNet-5 architecture
torch::Tensor forward(
torch::Tensor x,
torch::Tensor conv1_weight, torch::Tensor conv1_bias,
torch::Tensor conv2_weight, torch::Tensor conv2_bias,
torch::Tensor fc1_weight, torch::Tensor fc1_bias,
torch::Tensor fc2_weight, torch::Tensor fc2_bias,
torch::Tensor fc3_weight, torch::Tensor fc3_bias
) {
// Ensure inputs are on CUDA
x = x.to(torch::kCUDA);
conv1_weight = conv1_weight.to(torch::kCUDA);
conv1_bias = conv1_bias.to(torch::kCUDA);
conv2_weight = conv2_weight.to(torch::kCUDA);
conv2_bias = conv2_bias.to(torch::kCUDA);
fc1_weight = fc1_weight.to(torch::kCUDA);
fc1_bias = fc1_bias.to(torch::kCUDA);
fc2_weight = fc2_weight.to(torch::kCUDA);
fc2_bias = fc2_bias.to(torch::kCUDA);
fc3_weight = fc3_weight.to(torch::kCUDA);
fc3_bias = fc3_bias.to(torch::kCUDA);
// First convolutional layer
auto conv1 = torch::conv2d(x, conv1_weight, conv1_bias, {1, 1});
relu_kernel<<<(conv1.numel() + 255) / 256, 256>>>(conv1.data_ptr<float>(), conv1.numel());
auto pool1 = torch::max_pool2d(conv1, {2, 2}, {2, 2});
// Second convolutional layer
auto conv2 = torch::conv2d(pool1, conv2_weight, conv2_bias, {1, 1});
relu_kernel<<<(conv2.numel() + 255) / 256, 256>>>(conv2.data_ptr<float>(), conv2.numel());
auto pool2 = torch::max_pool2d(conv2, {2, 2}, {2, 2});
// Flatten the output
auto flat = pool2.view({pool2.size(0), -1});
// First fully connected layer
auto fc1 = torch::linear(flat, fc1_weight, fc1_bias);
relu_kernel<<<(fc1.numel() + 255) / 256, 256>>>(fc1.data_ptr<float>(), fc1.numel());
// Second fully connected layer
auto fc2 = torch::linear(fc1, fc2_weight, fc2_bias);
relu_kernel<<<(fc2.numel() + 255) / 256, 256>>>(fc2.data_ptr<float>(), fc2.numel());
// Final fully connected layer
auto fc3 = torch::linear(fc2, fc3_weight, fc3_bias);
return fc3;
}
// PyBind11 module definition
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "LeNet-5 forward pass");
}
Metric | Value | Unit | Variance | Samples |
---|
Rule | Description |
---|
Operation / Metric | Value | Unit |
---|---|---|
aten::conv2d | ||
CPU Time | 992708.15 | μs |
Device Time | 273300.89 | μs |
Self CPU Time | 37846.33 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 954861.81 | μs |
Device Time | 273300.89 | μs |
Self CPU Time | 48972.97 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 905888.84 | μs |
Device Time | 273300.89 | μs |
Self CPU Time | 100578.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 643476.88 | μs |
Device Time | 39064.24 | μs |
Self CPU Time | 643476.88 | μs |
Self Device Time | 39064.24 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::linear | ||
CPU Time | 648851.39 | μs |
Device Time | 149557.60 | μs |
Self CPU Time | 55861.57 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 104889.32 | μs |
Device Time | 953834.35 | μs |
Self CPU Time | 24838.91 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 80051.91 | μs |
Device Time | 953834.35 | μs |
Self CPU Time | 30582.27 | μs |
Self Device Time | 953834.35 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 953834.35 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 953834.35 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45310 warnings generated when compiling for host. Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.